• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1610
  • 706
  • 610
  • 185
  • 161
  • 67
  • 65
  • 54
  • 30
  • 26
  • 13
  • 13
  • 9
  • 9
  • 9
  • Tagged with
  • 4258
  • 755
  • 640
  • 578
  • 436
  • 402
  • 394
  • 321
  • 299
  • 279
  • 260
  • 248
  • 246
  • 220
  • 199
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
501

Augmentation du rapport signal/bruit dans une mesure de fluorescence par détection sensible à la phase

Dupont-Therrien, Olivier 13 April 2018 (has links)
Nous rapportons dans ce mémoire l'utilisation de la détection sensible à la phase pour la suppression du bruit de fond dans une mesure de fluorescence. Une telle action pourrait contribuer à Vaugmentation du rapport signal/bruit des mesures prises dans des environnements où la diffusion de lumière et la fluorescence d'espèces parasites sont des sources de bruit de fond importantes. Pour ce faire, nous avons séparé le projet en deux parties, soit la mesure du temps de vie de fluorescence et la suppression du bruit de fond par la détection sensible à la phase. Nous avons conçu dans la première partie un montage optique permettant la mesure de temps de vie de fluorescence dans le domaine fréquentiel de l'ordre de la nanoseconde pour des fluorophores en solution. Nous avons également caractérisé à l'aide de ce montage, différentes propriétés de mélanges de fluorophores ainsi qu'un système de nanoparticules de silice dopées de fluorescéine isothiocyanate munies ou non d'un coeur en argent. Pour la deuxième partie, nous avons utilisé la variation du déphasage d'un signal de modulation d'un amplificateur à détection synchrone pour se placer dans une condition de différence d'angle de phase permettant la suppression d'une composante du signal récolté. Cette technique a permis l'augmentation d'un facteur 10 sur la sensibilité précédente pour la mesure du temps de vie de fluorescence.
502

Réseaux de neurones pour l'apprentissage de la préférence en microscopie super-résolution

Robitaille, Louis-Emile 15 April 2021 (has links)
Pendant plusieurs années, la microscopie à fluorescence a été limitée par le phénomène de diffraction. Or, pour étudier des phénomènes dynamiques à l’intérieur des cellules, une résolution nanométrique est souvent nécessaire. Pour ce faire, une avancée importante pour la microscopie super-résolution fut l’invention du microscope à déplétion par émission stimulée(STED pour STimulated-Emission-Depletion) (Hell and Wichmann, 1994). Si la microscopieSTED permet d’atteindre la précision nanométrique, celle-ci consiste en une technique extrêmement sophistiquée et son utilisation requiert des connaissances avancées dans plusieurs domaines, par exemple, la physique, la chimie et la biologie. Dans le but de rendre le microscope plus accessible, Durand et al. (2018) tire profit des dernières avancées en intelligence artificielle pour automatiser le paramétrage du STED à l’aide d’une boucle d’optimisation. L’objectif visé est de produire des images avec la plus haute qualité tout en minimisant le photo blanchiment et le temps d’exposition. L’incapacité de mesurer la qualité des images et de choisir un compromis parmi les objectifs nécessite malheureusement toujours la présence d’un expert derrière le microscope. En automatisant l’évaluation de la qualité des images et la sélection de compromis, ce mémoire vise à montrer le potentiel des réseaux de neurones pour l’apprentissage de la préférence en sciences de la vie. / For many years, fluorescent microscopy has been limited by diffraction. However, to study dynamic phenomena inside cells, a nanometric resolution is often necessary. To cope with this problem, an important development for fluorescent microscopy was the invention ofSTimulated-Emission-Depletion microscopy (STED) (Hell and Wichmann, 1994). If STEDachieves nanometric microscopy, it is also an extremely sophisticated technique that requires advanced knowledge across a wide range of domains, e.g. physics, chemistry and biology. With the goal of democratising the microscope, Durand et al. (2018) use the last development in artificial intelligence to automate STED parameterization with an optimisation loop. The objective aimed is to produce high-quality images while minimising photo bleaching and exposition time. The inability of measuring image quality and of choosing between compromise among objectives still forces an expert to stay behind the microscope. By automating the assessment of image quality and the selection of compromise, this master thesis intends to demonstrate the potential of neural networks for preference learning in life science.
503

Studying cellulose nanostructure through fluorescence labeling and advanced microscopy techniques

Babi, Mouhanad January 2022 (has links)
As the major component of the plant cell wall, cellulose is produced by all plant species at an annual rate of over a hundred billion tonnes, making it the most abundant biopolymer on Earth. The hierarchical assembly of cellulose glucan chains into crystalline fibrils, bundles and higher-order networks endows cellulose with its high mechanical strength, but makes it challenging to breakdown and produce cellulose-based nanomaterials and renewable biofuels. In order to fully leverage the potential of cellulose as a sustainable resource, it is important to study the supramolecular structure and hydrolysis of this biomaterial from the nano- to the microscale. In this thesis, we develop new chemical strategies for fluorescently labeling cellulose and employ advanced imaging techniques to study its supramolecular structure at the singlefibril level. The developed labeling method provides a simple and efficient route for fluorescently tagging cellulose nanomaterials with commercially available dyes, yielding high degrees of labeling without altering the native properties of the nanocelluloses. This allowed the preparation of samples that were optimal for super-resolution fluorescence microscopy (SRFM), which was used to provide for the first time, a direct visualization of periodic disorder along the crystalline structure of individual cellulose fibrils. The alternating disordered and crystalline structure observed in SFRM was corroborated with time-lapsed acid hydrolysis experiments to propose a mechanism for the acid hydrolysis of cellulose fibrils. To gain insight on the ultrastructural origin of these regions, we applied a correlative super-resolution light and electron microscopy (SR-CLEM) workflow and observed that the disordered regions were associated nanostructural defects present along cellulose fibrils. Overall, the findings presented in this work provide significant advancements in our understanding of the hierarchical structure and depolymerization of cellulose, which will be useful for the development of new and efficient ways of breaking down this polymer for the production of renewable nanomaterials and bio-based products like biofuels and bioplastics. / Thesis / Doctor of Philosophy (PhD) / In this dissertation, we have studied in unprecedented detail the structure of cellulose – a polymer that is found in every plant. As the main structural component of the plant cell wall, cellulose endows trees with their strength and resilience while storing sunlight energy in its chemical bonds. Since plant biomass represents eighty percent of all living matter on Earth, cellulose is an abundant resource that can be used to produce sustainable and environmentally benign nanomaterials and bioproducts, like biofuels and bioplastics. Our ability to use cellulose as a renewable source of structural materials and energy is intimately linked to our capacity to break apart its tight structural packing. Deconstructing cellulose into various forms demands that we understand the multi-level organization of its structure and the susceptible regions within it. To gain this information, in this thesis we develop new labeling methods and apply state-of-the-art microscopy tools to directly visualize the arrangement of cellulose fibrils at the nanoscale (comparable to 1/10,000 the width of a human hair) and study their breakdown by acid treatment. The findings presented in this work furthers our fundamental understanding of the natural structure of cellulose, which has important implications on the development of industrial strategies to break down this abundant and renewable biomaterial.
504

Low Power Photoluminescence and Photochemical Upconversion

Islangulov, Radiy Rashitovich 02 November 2006 (has links)
No description available.
505

MONITORING METABOLIC RESPONSES IN SACCHAROMYCES CEREVISIAE USING FLUORESCENCE-BASED DETECTION OF NADH CONFORMATION

Cheng, Jun 24 August 2011 (has links)
No description available.
506

The Fluorescence Enhancement Effects of Gold Nanoparticles

Gruenbaum, Scott M. 05 May 2005 (has links)
No description available.
507

Temperature Dependence of Fluorescence Spectra in Some Common Polymers

Nepal, Suman January 2017 (has links)
No description available.
508

Fluorescence-based spectroscopic sensor development for technetium in harsh environments

Branch, Shirmir D. 22 May 2018 (has links)
No description available.
509

EVALUATION OF THE UNCERTAINTIES ASSOCIATED WITH IN VIVO X-RAY FLUORESCENCE BONE LEAD CALIBRATIONS

LODWICK, JEFFREY CLARK 02 September 2003 (has links)
No description available.
510

Laser Spectroscopy Sensors for Measurement of Trace Gaseous Formaldehyde

Boddeti, Ravi K. 05 September 2008 (has links)
No description available.

Page generated in 0.0608 seconds