• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 215
  • 62
  • 24
  • 17
  • 14
  • 8
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 2
  • 2
  • Tagged with
  • 437
  • 437
  • 50
  • 49
  • 48
  • 46
  • 38
  • 37
  • 34
  • 33
  • 32
  • 32
  • 25
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Desenvolvimento de metodos analiticos para a determinação de acido acetilsalicilico, paracetamol e cafeina em matriz solida por espectroscopia de fluorescencia / Development of analytical methods for the acetylsalicylic acid, paracetamol and caffeine determination in solid matrix by fluorescence spectroscopy

Moreira, Altair Benedito 19 May 2005 (has links)
Orientador: Lauro Tatsuo Kubota / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Quimica / Made available in DSpace on 2018-08-04T14:04:43Z (GMT). No. of bitstreams: 1 Moreira_AltairBenedito_D.pdf: 839003 bytes, checksum: df3c721cb44a6846a7d2abd555ad8847 (MD5) Previous issue date: 2005 / Resumo: Neste trabalho são descritos o desenvolvimento dos métodos analíticos para a determinação de ácido acetilsalicílico (AAS), paracetamol (PA) e cafeína (CF) em fase sólida por espectroscopia de fluorescência. A fluorescência nativa do PA no estado sólido foi demonstrada pela primeira vez. Todos os estudos realizados neste trabalho foram desenvolvidos visando principalmente a aplicação no controle de qualidade em indústrias químicas e farmacêuticas. Os estudos foram direcionados ao desenvolvimento de métodos analíticos para a determinação de AAS e PA, individualmente. Também foram desenvolvidos métodos para a determinação simultânea das misturas (CF e AAS) e (CF e PA) usando como ferramenta estatística a calibração multivariada para a construção dos modelos, empregando o algoritmo de regressão por mínimos quadrados parciais (PLSR-1). Foram otimizadas a quantidade de amostra colocada no porta amostra e a distância desta da fibra óptica para todos os métodos analíticos desenvolvidos neste trabalho, e as melhores condições foram de 25 mg e 0,9 cm, respectivamente. Os métodos desenvolvidos para a determinação individual de AAS e PA em amostras sólidas apresentaram boa precisão, exatidão e alta freqüência analítica, podendo chegar a 300 determinações por hora. A exatidão foi checada comparando os valores obtidos pelo método desenvolvido com os procedimentos adotados pela farmacopéia britânica e os resultados foram estatisticamente o mesmo a nível de 95% de confiança. Para a determinação simultânea das misturas, os modelos construídos apresentaram excelente desempenho de previsão. Os resíduos foram inferiores a 10% para a maior parte das amostras usadas nos conjuntos de validação externa. A qualidade dos modelos foi avaliada através do coeficiente de variabilidade (CV), o qual variou entre 4 e 7% para todos os modelos. Desta maneira, os métodos desenvolvidos neste trabalho são uma boa alternativa aos métodos tradicionais descritos na literatura, devido suas características favoráveis como elevada freqüência analítica, possibilidade de monitoramento on line em linha de produção e principalmente por serem não destrutivos, não gerarem resíduos e serem de baixo custo. / Abstract: In this work are described the development of analytical method for acetylsalicylic acid (AAS), paracetamol (PA) and caffeine (CF) determinations in solid phase by fluorescence spectroscopy. The native fluorescence of PA was demonstrated in the solid state for the first time. All studies performed here were developed seeking mainly the application in the quality control in chemical and pharmaceutical industries. The studies were addressed to the development of analytical methods for the AAS and PA determination, individually. Methods for the simultaneous determination (CF and AAS) and (CF and PA) using as statistical tool the multivariate calibration for the models construction, employing the partial least squares regression (PLSR-1) algorithm were also developed. The amount of sample placed in the sample compartment and the distance between the fiber optic and sample were optimized for all analytical methods developed in this work and the better conditions were 25 mg and 0.9 cm, respectively. The developed methods for single determination of AAS and PA in samples gave good performance. A high analytical frequency, being able to reach 300 determinations per hour. The accuracy checked comparing the obtained values by the developed methods with the procedures adopted by the British Pharmacopoeia and the results were statistically the same at 95% confidence level. For the simultaneous determination of the mixtures, the built models presented excellent performance of prediction. The residuals were lower than 10% for most used samples in the external validation set. The quality of the models was evaluated through the coefficient of variability (CV), which changed between 4 and 7% for the models. Looking for innovative methods that generate no residue, quick, non-destructive, on line monitoration in production line and low cost is a good option to the traditional methods. / Doutorado / Quimica Analitica / Doutor em Quimica
212

Design, synthèse et évaluation de contrastophores bimodaux pour l'imagerie par absorption à deux photons et par tomographie par émission de positons / Design, synthesis and evaluation of bimodal contrastophores for tow-photon microscopy and positron emission tomography

Denneval, Charline 24 October 2014 (has links)
L’objectif de ce travail a porté sur l’élaboration d’une sonde bimodale ADP–TEP (absorption à deux photons–tomographie par emission de positons) pour des applications en imagerie médicale.Dans un premier temps, le projet a consisté en le design, la synthèse et l’évaluation des propriétés photophysiques d’une nouvelle série de chromophores diaziniques A–p–D (A : groupement électro-attracteur, p : lien conjugué, D : groupement électro-donneur). Des études de relation structure-propriétés photophysiques impliquant des modulations sur chacune des sous-structures (groupements A et D, lien p-conjugué) ont été réalisées puis étudiées en UV et en fluorescence. Suite à l’obtention de ces premiers résultats, des mesures d’absorption à deux photons ont été effectuées sur ces fluorophores.Dans un second temps, les fluorophores ont été modifiés afin de greffer des parties hydrophiles. Des propriétés photophysiques encourageantes ont été obtenues et des premiers tests en imagerie bi-photonique ont été réalisés.L’insertion du fluor radiomarqué est envisagée via l’insertion d’un groupement –BF2. Pour cela des structures chélatantes, « mimes de BODIPY », incorporant une pyrimidine ou un triazole ont été élaborées. Des premiers essais ont été conduits mais n’ont pas permis l’obtention des composés borés correspondants. / The purpose of this subject has been the synthesis of a bimodal probe using TPA–PET techniques for a potential application in biological imaging.In this context, we have synthesized a new range of A–π –D fluorophores incorporating diazine (p-deficient heterocycle) as electron-withdrawing moiety, N,N-dimethylaniline as electron-donating part and fluorene as p-conjugated linker. In order to increase the conjugation along the scaffold, ethynyl and/or triazole bridges have been introduced on both sides of the fluorene. The UV/Vis and photoluminescence properties have been measured. Further to those results two-photon absorption cross-section of our fluorophores (dTPA) has been obtained. Following these promising results, hydrophilic compounds using PEG groups have been prepared and photoluminescence properties have been carried out. In order to use the boron center as a site for radiofluorination, the synthesis of "BODIPY-like" probes has been considered. A new series of pyrimidine and triazole ligand have been synthesized but the corresponding boron complexes haven’t been obtained.
213

Characterization of milk protein concentrate powders using powder rheometer and front-face fluorescence spectroscopy

Karthik, Sajith Babu January 1900 (has links)
Master of Science / Food Science Institute / Jayendra K. Amamcharla / Milk protein concentrate (MPC) powders are high-protein dairy ingredients obtained from membrane filtration processes and subsequent spray drying. MPC powders have extensive applications due to their nutritional, functional, and sensory properties. However, their flow properties, rehydration behavior, and morphological characteristics are affected by various factors such as processing, storage, particle size, and composition of the powder. Literature has shown that knowledge about the powder flowability characteristics is critical in their handling, processing, and subsequent storage. For this study, FT4 powder rheometer (FT4, Freeman Technologies, UK) was used to characterize the flowability of MPC powders during storage. This study investigated the flowability and morphological characteristics of commercial MPC powders with three different protein contents (70, 80, and 90%, w/w) after storage at 25ºC and 40ºC for 12 weeks. Powder flow properties (basic flowability energy (BFE), flow rate index (FRI), permeability, etc.) and shear properties (cohesion, flow function, etc.) were evaluated. After 12 weeks of storage at 40ºC, the BFE and FRI values significantly increased (P < 0.05) as the protein content increased from 70 to 90% (w/w). Dynamic flow tests indicated that MPC powders with high protein contents displayed higher permeability. Shear tests confirmed that samples stored at 40ºC were relatively less flowable than samples stored at 25ºC. Also, the lower protein content samples showed better shear flow behavior. The results indicated that MPC powders stored at 40ºC had more cohesiveness and poor flow characteristics than MPC powders stored at 25ºC. The circle equivalent diameter, circularity, and elongation of MPC powders increased as protein content and storage temperature increased, while the convexity decreased as protein content and storage temperature increased. Overall, the MPC powders evidently showed different flow properties and morphological characteristics due to their difference in composition and storage temperature. Literature has shown various methods for determining the solubility of dairy powders, but it requires expensive instruments and skilled technicians. The front-face fluorescence spectroscopy (FFFS) coupled with chemometrics could be used as an efficient alternative, which is commonly used as fingerprints of the various food products. To evaluate FFFS as a useful tool for the non-destructive measurement of solubility in the MPC powders, commercially procured MPC powders were stored at two temperatures (25 and 40ºC) for 1, 2, 4, 8, and 12 weeks to produce powders with different rehydration properties, which subsequently influenced their fluorescence spectra. The spectra of tryptophan and Maillard products were recorded and analyzed with principal components analysis. The solubility index and the relative dissolution index (RDI) obtained from focused beam reflectance measurement was used to predict solubility and dissolution changes using fluorescence spectra of tryptophan and Maillard products. The solubility index and RDI showed that the MPC powders had decreased solubility as the storage time and temperature increased. The results suggest that FFFS has the potential to provide rapid, nondestructive, and accurate measurements of rehydration behavior in MPC powders. Overall, the results indicated that solubility and dissolution behavior of MPC powders were related to protein content and storage conditions that could be measured using FFFS.
214

Etude du comportement du polyéthylène haute densité sous irradiation ultraviolette ou sollicitation mécanique par spectroscopie de fluorescence / Study of high density polyethylene under UV irradiation or mechanical stress by fluorescence spectroscopy

Douminge, Ludovic 28 May 2010 (has links)
De par leur diversité et leur large gamme d’applications, les polymères se sont imposés dans notre environnement. Dans le cas d’applications techniques ces matériaux peuvent être exposés à des environnements agressifs conduisant à une altération de leurs propriétés. Les effets de cette dégradation sont reliés à la notion de durée de vie, c'est-à-dire au temps nécessaire pour qu’une propriété atteigne un seuil en dessous duquel le matériau devient inutilisable. Le suivi du vieillissement des matériaux polymères présente donc des enjeux importants. La spectroscopie de fluorescence est une technique qui permet d’apporter certaines réponses à ce problème. Dans le cadre de cette étude, l’accent a été porté sur l’utilisation de la spectroscopie de fluorescence pour l’étude des phénomènes intervenant lors de l’irradiation UV ou de la sollicitation mécanique d’un polymère. Dans le cas du polyéthylène haute densité, l’absence de signal fluorescent intrinsèque impose l’ajout d’un colorant. Ce colorant donnant une réponse en fluorescence dépendant de son microenvironnement, toutes modifications des chaînes du polymère engendrent un déplacement du pic de fluorescence de la sonde. Ce travail peut être séparé en deux grandes parties indépendantes, d’un coté l’influence du vieillissement UV sur la réponse fluorescente et de l’autre l’influence d’une sollicitation mécanique. Dans la première partie, l’utilisation de techniques complémentaires telles que l’IRTF ou l’AED a permis de corréler les différents résultats avec les mécanismes de vieillissement connus du polyéthylène. Les résultats obtenus dans cette partie montrent la grande sensibilité de la spectroscopie de fluorescence aux réarrangements microstructuraux intervenant dans le matériau. Dans la seconde partie, la dépendance entre la contrainte appliquée au matériau et la longueur d’onde de fluorescence a permis a partir de modèles simples d’évaluer les contraintes internes qui se développent au cours d’une sollicitation cyclique. / Due to their diversity and their wide range of applications, polymers have emerged in our environment. For technical applications, these materials can be exposed to aggressive environment leading to an alteration of their properties. The effects of this degradation are linked to the concept of life duration, corresponding to the time required for a property to reach a threshold below which the material becomes unusable. Monitoring the ageing of polymer materials constitute a major challenge. Fluorescence spectroscopy is a technique able to provide accurate information concerning this issue. In this study, emphasis was placed on the use of fluorescence spectroscopy to study the phenomena involved in either the UV radiation or mechanical stresses of a polymer. In the case of high density polyethylene, the lack of intrinsic fluorescent signal leads to the use of a dye. This dye gives a fluorescent response depending on its microenvironment. All modifications in the macromolecular chain generate a shift of the fluorescent peak. This work can be dissociated in two major parts, on one hand the influence of UV aging on the fluorescent response and in another hand the influence of mechanical stresses. In the first part, complementary analyses like FTIR or DSC are used to correlate fluorescent results with known photo degradation mechanisms. The results show the great sensibility of the technique to the microstructural rearrangement in the polymer. In the second part, the dependence between the stress and the fluorescence emission gives opportunity to evaluate internal stresses in the material during cyclic solicitations.
215

Measuring the binding between estrogen receptor alpha and potential endocrine disruptors by fluorescence polarization and total internal reflection fluorescence

Yiu, Kwok Wing 01 January 2013 (has links)
No description available.
216

In Vivo Characterization of Myocardial Tissue Post Myocardial Infarction Using Combined Fluorescence and Diffuse Reflectance Spectroscopy

Ti, Yalin 10 July 2009 (has links)
Accurately assessing the extent of myocardial tissue injury induced by Myocardial infarction (MI) is critical to the planning and optimization of MI patient management. With this in mind, this study investigated the feasibility of using combined fluorescence and diffuse reflectance spectroscopy to characterize a myocardial infarct at the different stages of its development. An animal study was conducted using twenty male Sprague-Dawley rats with MI. In vivo fluorescence spectra at 337 nm excitation and diffuse reflectance between 400 nm and 900 nm were measured from the heart using a portable fiber-optic spectroscopic system. Spectral acquisition was performed on - (1) the normal heart region; (2) the region immediately surrounding the infarct; and (3) the infarcted region - one, two, three and four weeks into MI development. The spectral data were divided into six subgroups according to the histopathological features associated with various degrees / severities of myocardial tissue injury as well as various stages of myocardial tissue remodeling, post infarction. Various data processing and analysis techniques were employed to recognize the representative spectral features corresponding to various histopathological features associated with myocardial infarction. The identified spectral features were utilized in discriminant analysis to further evaluate their effectiveness in classifying tissue injuries induced by MI. In this study, it was observed that MI induced significant alterations (p < 0.05) in the diffuse reflectance spectra, especially between 450 nm and 600 nm, from myocardial tissue within the infarcted and surrounding regions. In addition, MI induced a significant elevation in fluorescence intensities at 400 and 460 nm from the myocardial tissue from the same regions. The extent of these spectral alterations was related to the duration of the infarction. Using the spectral features identified, an effective tissue injury classification algorithm was developed which produced a satisfactory overall classification result (87.8%). The findings of this research support the concept that optical spectroscopy represents a useful tool to non-invasively determine the in vivo pathophysiological features of a myocardial infarct and its surrounding tissue, thereby providing valuable real-time feedback to surgeons during various surgical interventions for MI.
217

Fluorescent Dissolved Organic Matter in Yellowstone National Park Hot Springs

January 2020 (has links)
abstract: I present for the first time a broad-scale assessment of dissolved organic matter in the continental hot springs of Yellowstone National Park. The concentration of dissolved organic carbon in hot springs is highly variable, but demonstrates distinct trends with the geochemical composition of springs. The dissolved organic carbon concentrations are lowest in the hottest, most deeply sourced hot springs. Mixing of hydrothermal fluids with surface waters or reaction with buried sedimentary organic matter is typically indicated by increased dissolved organic carbon concentrations. I assessed the bulk composition of organic matter through fluorescence analysis that demonstrated different fluorescent components associated with terrestrial organic matter, microbial organic matter, and several novel fluorescent signatures unique to hot springs. One novel fluorescence signature is observed exclusively in acidic hot springs, and it is likely an end product of thermally-altered sedimentary organic matter. This acid-spring component precipitates out of solution under neutral or alkaline conditions and characterization of the precipitate revealed evidence for a highly condensed aromatic structure. This acid-spring component serves as a reliable tracer of acidic, hot water that has cycled through the subsurface. Overall, dissolved organic carbon concentrations and fluorescent features correlate with the inorganic indicators traditionally used to infer spring fluid mixing in the subsurface. Further, the fluorescence information reveals subtle differences in mixing between fluid phases that are not distinguishable through classic inorganic indicator species. My work assessing dissolved organic carbon in the Yellowstone National Park hot springs reveals that the organic matter in hydrothermal systems is different from that found in surface waters, and that the concentration and composition of hot spring dissolved organic matter reflects the subsurface geochemical and hydrological environment. / Dissertation/Thesis / Doctoral Dissertation Chemistry 2020
218

Studying Molecular Interactions under Flow with Fluorescence Fluctuation Spectroscopy

Perego, Eleonora 16 January 2019 (has links)
No description available.
219

Interakce a agregace v systémech hyaluronan-aminokyseliny-tenzid / Interactions and aggregation in hyaluronan-aminoacid-surfactant systems

Venerová, Tereza January 2009 (has links)
The effect of native hyaluronan addition on CMC of excluded surfactants (Tween 20, BETADET THC 2, SDS, CTAT a CTAB) in physiological solution (0,15 M NaCl) has been investigated by fluoresence spectroscopy with Pyrene and Nile red as probes. The greatest influence on CMC has been observed in systems with cationic surfactant. System of cetyltrimethylamonnium bromid has been closely studied. Solubilization experiments with a hydrophobic dye Sudan red has been realized and aggregation number of this system has been determinated via fluorescence quenching with cetylpyridinium chloride as quencher and Pyrene as fluorescence probe. Addition of hyaluronan (native or hydrophobicaly modified) reduces aggregation number of system.
220

Chemical and physical aspects of Lithium borate fusion

Loubser, Magdeleen 29 October 2010 (has links)
Fused glass beads as a sample preparation method for X-ray Fluorescence spectroscopy (XRF) were introduced in 1957 by Claisse; it soon became the preferred method to introduce oxide samples to the spectrometer, because heterogeneity, mineralogical and particle size effects are eliminated during the fusion process. Matrix effects are largely reduced by the resulting dilution. With the recent advances in XRF spectrometers, instruments with enhanced generator and temperature stability, improved sensitivity (even for light elements), and effective matrix correction software are available. Consequently, the largest proportion of analytical error results from the sample preparation step. Sampling error will always contribute the largest overall error but that is not the topic of this discussion. After more than 50 years of fused bead use in XRF analysis, certain matrices remain problematic. Although many fusion methods for chromite-, sulphide- and cassiterite-rich materials have been published, easily reproduced, routine methods for these still elude analytical chemists. Lengthy fusions at temperatures higher than 1100ºC are often prescribed for refractory materials and ores, and until recently one of the biggest challenges was a metal-bearing sample e.g. contained in slags or certain refractory materials. This study was conducted to identify and elucidate the reactions occurring in the formation of a lithium borate glass, but also between the lithium borate and oxides during glass formation. Different analytical techniques were used to investigate the reactions occurring during the fusion process based on theoretical glass-making principles. As a starting point, Thermo Gravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) were used jointly to evaluate the reactions occurring during the fusion of lithium borate glasses, and at a later stage, oxide/flux mixtures. When a different TGA instrument was used, Differential Scanning Calorimetry (DSC) was used in conjunction with the TGA. Observed reactions were modelled in a muffle furnace to produce identical material in larger quantities, and this material was then investigated using X-ray Powder Diffractometry (XRD), Raman Spectroscopy and Electron Microprobe Analysis (EPMA). The most enlightening result from the TGA/DSC results was the large mass loss above 1050 ºC. Literature often prescribes prolonged fusions at elevated temperatures for certain fusions, but it was proved beyond reasonable doubt that this practise causes volatilisation of the flux and leads to erroneous analytical results. The next analytical technique applied to the flux and flux/oxide samples was XRD. Where pre-fused fluxes were investigated, the XRD data served as confirmation of the glassy state of the pre-fused flux as a broad humpy scan indicative of an amorphous material was seen in stead of a diffractogram with sharp, well defined peaks. After heating to above the temperature of re-crystallisation, the phases present could be identified from the diffractogram. Provisional results using the in-situ, high temperature stage point towards the possibility of using this technique to great effect to investigate the presence of different phases formed at high temperatures. Flux-oxide mixtures were measured on the high temperature stage and after cooling a new phase was observed indicating that new phases formed during a fusion reaction. As the heating stage is slow-cooled, the chance of crystallisation in the glass is good, providing the possibility for investigating this formation of new phases at elevated temperatures further with a more suitable heating element that will contain the material. Raman spectroscopy was subsequently used to gain information about the bonds within the flux. Pure lithium tetraborate and lithium metaborate fluxes were analysed as well as flux oxide mixtures. The vibrations could not be predicted from first principles as band broadening occurs in glasses that makes theoretical predictions very difficult. The data obtained was compared to similar studies in literature and good agreement was found. In oxide-flux mixtures definite new bands were observed that was not part of the flux or oxide spectrum. EPMA results allowed calculation of the maximum solubilities of an oxide in a specific flux. It was done using Cr2O3 and ZrO2 and compared well with experimental values obtained from literature. The microscope images revealed some new insights into the theory of XRF fusions. It could clearly be seen that dissociation of the minerals in the sample occurred, thus proving that no mineralogical effects exist in a fused glass bead, and it could be observed that the flux oxide mixture devitrify when over saturated. / Dissertation (MSc)--University of Pretoria, 2010. / Chemistry / unrestricted

Page generated in 0.0584 seconds