Spelling suggestions: "subject:"fluorescent protein"" "subject:"dluorescent protein""
41 |
Use of green fluorescent protein for the analysis of protein-protein and protein-DNA interactionsChen, Kai January 2011 (has links)
Restriction modification (RM) systems play a crucial role in preventing the entry of foreign DNA into the bacterial cell. The best studied Type I RM system is EcoKI from Escherichia coli K12. Both bacteriophage and conjugative plasmids have developed a variety of strategies to circumvent the host RM system. One such strategy involves the production of antirestriction proteins that mimic a short segment of DNA and efficiently inhibit the RM system. The main aim of this project was to analyse the interaction of EcoKI and its cognate methylase (MTase) with the T7 antirestriction protein, known as overcome classical restriction (Ocr), and various ArdA antirestriction proteins. Currently, there is a paucity of structural data on the complex formed between the Type I system and the antirestriction proteins. The aim of this work was twofold; (i) compare the interaction of MTase with DNA and Ocr and (ii) quantify the strength of interaction between MTase and various ArdA proteins. The MTase was fused to the Green Fluorescent Protein (GFP) to facilitate determination of the orientation of interaction with DNA and Ocr. Time resolved fluorescence measurements were carried out using the GFP-MTase fusion to determine the fluorescence lifetime and anisotropy decay. These experiments were conducted using a time resolved fluorescence instrument fabricated in-house. The values determined in these experiments were then used to perform fluorescence resonance energy transfer (FRET) measurements with fluorescently labelled DNA or Ocr. These measurements gave information concerning the relative orientation of the MTase with either DNA or Ocr. The GFP-MTase fusion was also used to quantify the strength of interaction with various ArdA proteins. Previous attempts to determine the strength of interaction between MTase and ArdA proteins by employing conventional techniques have been unsuccessful. Therefore, a novel method was developed that exploits the interaction of MTase with a cation exchange medium, which can subsequently be displaced upon binding to ArdA. This method facilitated the determination, for the first time, of a set of binding affinities for the MTase and ArdA interaction.
|
42 |
Investigating the Structure of FtsZ to Understand its Functional Role in Bacterial Cell DivisionMoore, Desmond Antoine January 2016 (has links)
<p>FtsZ, a bacterial tubulin homologue, is a cytoskeleton protein that plays key roles in cytokinesis of almost all prokaryotes. FtsZ assembles into protofilaments (pfs), one subunit thick, and these pfs assemble further to form a “Z ring” at the center of prokaryotic cells. The Z ring generates a constriction force on the inner membrane, and also serves as a scaffold to recruit cell-wall remodeling proteins for complete cell division in vivo. FtsZ can be subdivided into 3 main functional regions: globular domain, C terminal (Ct) linker, and Ct peptide. The globular domain binds GTP to assembles the pfs. The extreme Ct peptide binds membrane proteins to allow cytoplasmic FtsZ to function at the inner membrane. The Ct linker connects the globular domain and Ct peptide. In the present studies, we used genetic and structural approaches to investigate the function of Escherichia coli (E. coli) FtsZ. We sought to examine three questions: (1) Are lateral bonds between pfs essential for the Z ring? (2) Can we improve direct visualization of FtsZ in vivo by engineering an FtsZ-FP fusion that can function as the sole source of FtsZ for cell division? (3) Is the divergent Ct linker of FtsZ an intrinsically disordered peptide (IDP)?</p><p> One model of the Z ring proposes that pfs associate via lateral bonds to form ribbons; however, lateral bonds are still only hypothetical. To explore potential lateral bonding sites, we probed the surface of E. coli FtsZ by inserting either small peptides or whole FPs. Of the four lateral surfaces on FtsZ pfs, we obtained inserts on the front and back surfaces that were functional for cell division. We concluded that these faces are not sites of essential interactions. Inserts at two sites, G124 and R174 located on the left and right surfaces, completely blocked function, and were identified as possible sites for essential lateral interactions. Another goal was to find a location within FtsZ that supported fusion of FP reporter proteins, while allowing the FtsZ-FP to function as the sole source of FtsZ. We discovered one internal site, G55-Q56, where several different FPs could be inserted without impairing function. These FtsZ-FPs may provide advances for imaging Z-ring structure by super-resolution techniques.</p><p> The Ct linker is the most divergent region of FtsZ in both sequence and length. In E. coli FtsZ the Ct linker is 50 amino acids (aa), but for other FtsZ it can be as short as 37 aa or as long as 250 aa. The Ct linker has been hypothesized to be an IDP. In the present study, circular dichroism confirmed that isolated Ct linkers of E. coli (50 aa) and C. crescentus (175 aa) are IDPs. Limited trypsin proteolysis followed by mass spectrometry (LC-MS/MS) confirmed Ct linkers of E. coli (50 aa) and B. subtilis (47 aa) as IDPs even when still attached to the globular domain. In addition, we made chimeras, swapping the E. coli Ct linker for other peptides and proteins. Most chimeras allowed for normal cell division in E. coli, suggesting that IDPs with a length of 43 to 95 aa are tolerated, sequence has little importance, and electrostatic charge is unimportant. Several chimeras were purified to confirm the effect they had on pf assembly. We concluded that the Ct linker functions as a flexible tether allowing for force to be transferred from the FtsZ pf to the membrane to constrict the septum for division.</p> / Dissertation
|
43 |
ENGINEERING FLUORESCENT PROTEIN BIOSENSORS FOR INTERROGATING BIOLOGICALLY RELEVANT CHEMICAL SPECIESKeelan J Trull (6900062) 16 August 2019 (has links)
<div>
<p>Fluorescent proteins and the biosensors created with them
have been used extensively to monitor chemical species inside and outside of
the cell. They have been used to increase our knowledge of cellular function in
normal and diseased states. Fluorescent biosensors are advantageous because
they can be genetically encoded, do not require exogenous reagents, and can be
quantitative. Fluorescent biosensors are also able to measure analytes with
high spatial and temporal resolutions, enabling measurements at the scale of
physiological events. In this thesis efforts have made to increase the
available fluorescent biosensor tools for imaging cellular events. This work includes
creation of new sensors for two molecules not yet detectable via fluorescent
protein biosensor, acetylcholine and adenosine diphosphate. Efforts were also
made to improve the current available biosensors for adenosine triphosphate and
cellular redox, to make them more compatible with multiplex and deep tissue
imaging. Here I present my work to design, characterize and utilize these
fluorescent biosensors.</p>
</div>
<br>
|
44 |
Aumento de escala para a produção de Proteína verde fluorescente melhorada (Enhanced Green Fluorescent Protein - EGFP) a partir de Escherichia coli recombinante em biorreator convencional /Sousa, Ana Paula Abuchain January 2019 (has links)
Orientador: Marcel Otavio Cerri / Resumo: Avanços na biotecnologia proporcionaram possibilidades para o eficiente desempenho da produção em larga escala de diversas biomoléculas e consequentemente suas aplicações industriais. A Escherichia coli se destaca dentre a gama de microrganismos que agem como hospedeiros de genes, desempenhando a função de codificar a síntese proteica. Os vetores mais veiculados na produção de proteínas recombinantes em E. coli são baseados no operon lac, onde o isopropil β-D1-tio-galactopiranosídeo (IPTG), análogo a molécula de lactose, é utilizado para a indução da produção da proteína de interesse. Estudos descritos na literatura também observaram o bom desempenho da lactose como agente de indução da E. coli recombinante na expressão de proteína verde fluorescente melhorada (Enhanced Green Fluorescent Protein – EGFP), e suas vantagens quando comparada ao IPTG, como por exemplo menor custo e menor toxicidade. A EGFP se tornou promissora pelo fato de ser monomérica e não precisar de auxilio de quaisquer agentes adicionais para exibir atividade de fluorescência. Possui variadas utilidades no campo biológico como excelente biomarcador da expressão genica e biosensor. Em bioprocessos, operados em biorreatores convencionais é fundamental o estudo dos parâmetros interferentes nos cultivos para a otimização da expressão do produto desejado. A oxigenação em processos conduzidos de maneira aeróbica, também é uma tarefa desafiadora em biorreatores convencionais, sendo imprescindível o controle da con... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Advances in biotechnology have provided possibilities to the performance of large-scale of biomolecules and therefore of their industrial applications. Escherichia coli stands out among microorganisms that act as host genes, functioning as a synthetic protein. The most useful vectors for the production of recombinant proteins in E. coli are based on the operon lac, where isopropyl β-D1-thiogalactopyroside (IPTG), analogous to lactose, is used to induce the production of proteins of interest. Studies in the literature have also observed the good performance of lactose as an inducer of recombinant E. coli in the expression of Enhanced Green Fluorescent Protein (EGFP), and its advantages when compared to IPTG, such as lower cost and toxicity. EGFP becomes promising because it is monomeric and does not need to help the main agents for fluorescence activity. It has several uses in the biological field as an excellent biomarker of gene expression and biosensor. In bioprocesses, operated in conventional bioreactors, it is fundamental to study the interfering parameters in the cultures to optimize the expression of the desired product. Oxygenation in aerobically conducted processes is also a challenging task in conventional bioreactors, with control of the concentration of dissolved oxygen in the culture medium is essential, which may be limiting for growth and expression of the protein of interest. In processes of production of heterologous proteins, it is assumed that the productiv... (Complete abstract click electronic access below) / Mestre
|
45 |
Avaliação da estabilidade dos fármacos furosemida e aminofilina em soluções parenterais de grande volume. Utilização da proteína verde fluorescente (GFP) como biossensor da estabilidade de fármacos em soluções parenterais / Evaluation of furosemide and aminophilline stability in parenteral solutions. Utilization of Green Fluorescent Protein (GFP) as biosensor for drugs stability in parenteral solutionsSantos, Carolina Alves dos 15 February 2007 (has links)
A avaliação da estabilidade dos medicamentos e sua correta utilização em diferentes veículos de infusão são fundamentais para garantir a manutenção das características terapêuticas do fármaco e para promover minimização de eventos adversos. Incompatibilidades entre as estruturas dos fármacos, em diferentes veículos de administração, podem gerar possíveis associações antagônicas ou sinérgicas, resultando em alterações das propriedades físico-químicas e, consequentemente, dos efeitos farmacológicos e das respostas clínicas esperadas. A proteína verde fluorescente (GFP) por apresentar propriedades de sensibilidade e especificidade, mostra-se promissora como potencial biossensor da estabilidade de fármacos em soluções parenterais de grande volume (SPGV), por apresentar sensibilidade a alterações das propriedades físico-químicas do meio. GFP é uma proteína compacta, globular e ácida, composta de um monômero de 27kDa, que vem sendo extensivamente utilizada como indicador biológico em processos de esterilização e desinfecção devido a sua estabilidade a altas temperaturas. O surgimento de métodos analíticos modernos e de alta precisão como a espectrofotometria de UV e a cromatografia líquida de alta eficiência (HPLC), alinhados a potencial utilização das proteínas fluorescentes como forma de avaliar as alterações da estabilidade de fármacos nas SPGV, vêm contribuir para a correta e racional utilização dos medicamentos no ambiente hospitalar. Diante disso a avaliação da estabilidade do coquetel de fármacos composto por furosemida e aminofilina em solução parenteral de 20% manitol e 0,9% NaCl foi sugerida. Amostras foram preparadas nas seguintes soluções (v/v): 20% manitol ou 0,9% NaCl na seguintes proporções utilizadas frequentemente na prática clínica: (i) 80% solução parenteral adicionada de 16% furosemida e 4% água para injeção (excipiente do fármaco aminofilina), (ii) 80% solução parenteral adicionada de 4% aminofilina e 16% água para injeção + NaOH (excipiente do fármaco furosemida), (iii) 80% solução parenteral, adicionada de 16% furosemida e 4% aminofilina (coquetel). As amostras foram avaliadas em espectrofotômetro imediatamente após o preparo e após um período 20h, em y=228nm e y=275nm para os fármacos furosemida e aminofilina, respectivamente. Para os fármacos individualmente associados às SPGV na faixa de pH 10-11, as concentrações finais obtidas foram correspondente ás inicialmente adicionadas e para o fármaco aminofilina foi estável até o período de 20h. Para avaliar a estabilidade dos fármacos associados à solução de 20% manitol a utilização de HPLC mostrou manutenção da estabilidade dos fármacos durante o período de infusão de até 20h. A proteína GFP adicionada as soluções das amostras na concentração 8?g/mL e determinada em espectrofluorímetro (yex=394nm, yem=509nm), mostrou resultados promissores quanto ao sua potencial utilização como biossensor da estabilidade dos fármacos furosemida e aminofilina nas soluções parenterais, mostrando comportamento de concentração e intensidade de fluorescência característicos e proporcionais a perda da estabilidade das soluções. A utilização de proteínas fluorescentes como potencial biossensor da estabilidade de fármacos em soluções parenterais é importante por fornecer parâmetros que garantam a eficácia dos medicamentos veiculados em soluções parenterais, racionalizando a sua utilização no ambiente hospitalar. / Parenteral solutions (PS) are used as vehicles in drugs administration to the organism. The development of analytical techniques that enables the detection of incompatibilities between drugs and PS is mandatory to guarantee their correct association with minimum adverse events. Incompatibilities of drugs in different infusion vehicles change according to physical-chemical properties of solutions, because of the molecular structure, chemical compounds used for preservation and stability of PS components. This fact can promote antagonic or synergic effects with loss of clinical response. The green fluorescent protein (GFP) is compact, globular, and acidic, with 27KDa and has been used as a biologic indicator of sterilization and disinfection process because it is easily detected using UV light, spectrofluorometry, with high thermal stability. GFP specificity and sensibility to physical-chemical changes in the media favors its use as a biosensor for drugs stability in parenteral solutions. The development of analytical methods such as spectrophotometry and high performance liquid chromatography (HPLC) in association with the fluorescent properties of some proteins enable the detection of potential incompatibilities between drugs and parenteral solutions, promoting a rational utilization of drugs in hospital. The evaluation of a diuretic cocktail with furosemide and aminophylline administrated in parenteral solutions of 20% mannitol and 0.9% NaCl was studied. Samples were prepared either in 20% mannitol or 0.9 % NaCl (PS), as follows: (i) 80% parenteral solution added with 16% furosemide and 4% WFI (solvent for aminophylline), (ii) 80% parenteral solution 4% aminophylline and 16% WFI+NaOH (pH 9-10, solvent for furosemide), (iii) 80% parenteral solution, added with 16% furosemide and 4% aminophylline (cocktail). Samples were diluted and prepared in a pH range of 6.5-7.5 and pH 10-11 for aminophylline and furosemide, individually and associated. The samples were prepared with PS including the excipients used in the drugs formulations. The absorbance was determined immediately after preparation and after 20 hours at 25°C and y= 228 nm, 275 nm, respectively for furosemide and aminophylline. GFP stability was determined in a spectrofluorometer (yex=394nm, yem=509nm) by adding 8 µg/mL of the purified protein in a 3.0mL sample (25°C) and the fluorescence intensity was evaluated after 20 hours. For both drugs in parenteral solutions (pH 10-11) the final concentrations observed were similar to the expected, aminophylline was also stable after 20h. When both drugs were associated in parenteral solutions of 20% mannitol, the use of HPLC showed stability for both drugs in the first 20h. The fluorescence intensity of GFP added to the samples was determined in spectrofluorometer (yex=394nm, yem=509nm), showing that fluorescence intensity was proportional to the drugs stability loss. Therefore, the utilization of fluorescence proteins is important to assure the drugs effectiveness and rational utilization in hospital places.
|
46 |
Estudo comparativo de promotores de micobactérias utilizando GFP como gene repórter para o desenvolvimento de vacinas de BCG recombinante. / Comparative study of mycobacterial promoters using GFP as a reporter gene for the development of recombinant BCG vaccines.Nascimento, Larissa Vilela 07 August 2015 (has links)
BCG é uma das vacinas mais usadas no mundo. Avanços na manipulação genética têm permitido o seu uso como carreador de antígenos heterólogos, porém o aprimoramento dos sistemas de expressão se faz necessário, sendo o promotor um importante elemento, uma vez que regula o nível de produção do antígeno, induzindo uma resposta imunológica adequada. Avaliamos a atividade de diferentes promotores de micobactérias, como o PAg, PAN, PBlaF*, Phsp60 e um promotor ainda não caracterizado do micobacteriófago L5, usando o gene gfp como repórter da expressão, todos clonados no vetor extracromossomal, pLA71. Foi possível avaliar as cepas de M. smegmatis e BCG fluorescentes para quase todas as construções e alguns plasmídeos pLA71-p mostraram características diferentes dependentes da micobactéria transformada. Numa escala de força de expressão, os diferentes promotores se apresentaram como fraco (pLA71-PAN-gfp), médio (pLA71-PBlaf*-gfp) e forte (pLA71-Phsp60-gfp). Os rBCG foram usados para infecção de macrófagos e a atividade dos promotores não foi afetada após a internalização. Para ensaio de localização, camundongos foram inoculados com BCG e foi possível confirmar a presença de colônias (recombinantes ou não) nos pulmões após 1 e 3 dias de inoculação, por plaqueamento em meio sólido e por microscopia confocal. / BCG is one of the most widely used vaccines in the world. Advances in genetic manipulation have allowed their use as a carrier for heterologous antigens, however the improvement of systems of expression is necessary, the promoter being an important element, since it regulates the expression level of the antigen, inducing an adequate immune response. We evaluated the activity of different promoters of mycobacteria, such as PAg, PAN, PBlaF* and Phsp60, and the not yet characterized promoter of the micobacteriophage L5, using GFP as a reporter gene expression activity, all cloned in the extrachromosomal vector, pLA71. It was possible to evaluate promoters in the M. smegmatis and BCG strains, fluorescent for almost all constructions and some pLA71-p plasmids showed different characteristics dependent on the transformed mycobacterium. The different promoters showed expression levels as weak (pLA71-PAN-gfp), medium (pLA71-PBlaf*-gfp) and strong (pLA71-Phsp60-gfp). The rBCG were used for infection of macrophages and the activity of the promoters wasnt affected after internalization. For BCG location test, mice were inoculated and it was possible to confirm the presence of colonies (recombinant or not) in the lungs after 1 and 3 days after inoculation by plating on solid medium and by confocal microscopy.
|
47 |
Avaliação da estabilidade dos fármacos furosemida e aminofilina em soluções parenterais de grande volume. Utilização da proteína verde fluorescente (GFP) como biossensor da estabilidade de fármacos em soluções parenterais / Evaluation of furosemide and aminophilline stability in parenteral solutions. Utilization of Green Fluorescent Protein (GFP) as biosensor for drugs stability in parenteral solutionsCarolina Alves dos Santos 15 February 2007 (has links)
A avaliação da estabilidade dos medicamentos e sua correta utilização em diferentes veículos de infusão são fundamentais para garantir a manutenção das características terapêuticas do fármaco e para promover minimização de eventos adversos. Incompatibilidades entre as estruturas dos fármacos, em diferentes veículos de administração, podem gerar possíveis associações antagônicas ou sinérgicas, resultando em alterações das propriedades físico-químicas e, consequentemente, dos efeitos farmacológicos e das respostas clínicas esperadas. A proteína verde fluorescente (GFP) por apresentar propriedades de sensibilidade e especificidade, mostra-se promissora como potencial biossensor da estabilidade de fármacos em soluções parenterais de grande volume (SPGV), por apresentar sensibilidade a alterações das propriedades físico-químicas do meio. GFP é uma proteína compacta, globular e ácida, composta de um monômero de 27kDa, que vem sendo extensivamente utilizada como indicador biológico em processos de esterilização e desinfecção devido a sua estabilidade a altas temperaturas. O surgimento de métodos analíticos modernos e de alta precisão como a espectrofotometria de UV e a cromatografia líquida de alta eficiência (HPLC), alinhados a potencial utilização das proteínas fluorescentes como forma de avaliar as alterações da estabilidade de fármacos nas SPGV, vêm contribuir para a correta e racional utilização dos medicamentos no ambiente hospitalar. Diante disso a avaliação da estabilidade do coquetel de fármacos composto por furosemida e aminofilina em solução parenteral de 20% manitol e 0,9% NaCl foi sugerida. Amostras foram preparadas nas seguintes soluções (v/v): 20% manitol ou 0,9% NaCl na seguintes proporções utilizadas frequentemente na prática clínica: (i) 80% solução parenteral adicionada de 16% furosemida e 4% água para injeção (excipiente do fármaco aminofilina), (ii) 80% solução parenteral adicionada de 4% aminofilina e 16% água para injeção + NaOH (excipiente do fármaco furosemida), (iii) 80% solução parenteral, adicionada de 16% furosemida e 4% aminofilina (coquetel). As amostras foram avaliadas em espectrofotômetro imediatamente após o preparo e após um período 20h, em y=228nm e y=275nm para os fármacos furosemida e aminofilina, respectivamente. Para os fármacos individualmente associados às SPGV na faixa de pH 10-11, as concentrações finais obtidas foram correspondente ás inicialmente adicionadas e para o fármaco aminofilina foi estável até o período de 20h. Para avaliar a estabilidade dos fármacos associados à solução de 20% manitol a utilização de HPLC mostrou manutenção da estabilidade dos fármacos durante o período de infusão de até 20h. A proteína GFP adicionada as soluções das amostras na concentração 8?g/mL e determinada em espectrofluorímetro (yex=394nm, yem=509nm), mostrou resultados promissores quanto ao sua potencial utilização como biossensor da estabilidade dos fármacos furosemida e aminofilina nas soluções parenterais, mostrando comportamento de concentração e intensidade de fluorescência característicos e proporcionais a perda da estabilidade das soluções. A utilização de proteínas fluorescentes como potencial biossensor da estabilidade de fármacos em soluções parenterais é importante por fornecer parâmetros que garantam a eficácia dos medicamentos veiculados em soluções parenterais, racionalizando a sua utilização no ambiente hospitalar. / Parenteral solutions (PS) are used as vehicles in drugs administration to the organism. The development of analytical techniques that enables the detection of incompatibilities between drugs and PS is mandatory to guarantee their correct association with minimum adverse events. Incompatibilities of drugs in different infusion vehicles change according to physical-chemical properties of solutions, because of the molecular structure, chemical compounds used for preservation and stability of PS components. This fact can promote antagonic or synergic effects with loss of clinical response. The green fluorescent protein (GFP) is compact, globular, and acidic, with 27KDa and has been used as a biologic indicator of sterilization and disinfection process because it is easily detected using UV light, spectrofluorometry, with high thermal stability. GFP specificity and sensibility to physical-chemical changes in the media favors its use as a biosensor for drugs stability in parenteral solutions. The development of analytical methods such as spectrophotometry and high performance liquid chromatography (HPLC) in association with the fluorescent properties of some proteins enable the detection of potential incompatibilities between drugs and parenteral solutions, promoting a rational utilization of drugs in hospital. The evaluation of a diuretic cocktail with furosemide and aminophylline administrated in parenteral solutions of 20% mannitol and 0.9% NaCl was studied. Samples were prepared either in 20% mannitol or 0.9 % NaCl (PS), as follows: (i) 80% parenteral solution added with 16% furosemide and 4% WFI (solvent for aminophylline), (ii) 80% parenteral solution 4% aminophylline and 16% WFI+NaOH (pH 9-10, solvent for furosemide), (iii) 80% parenteral solution, added with 16% furosemide and 4% aminophylline (cocktail). Samples were diluted and prepared in a pH range of 6.5-7.5 and pH 10-11 for aminophylline and furosemide, individually and associated. The samples were prepared with PS including the excipients used in the drugs formulations. The absorbance was determined immediately after preparation and after 20 hours at 25°C and y= 228 nm, 275 nm, respectively for furosemide and aminophylline. GFP stability was determined in a spectrofluorometer (yex=394nm, yem=509nm) by adding 8 µg/mL of the purified protein in a 3.0mL sample (25°C) and the fluorescence intensity was evaluated after 20 hours. For both drugs in parenteral solutions (pH 10-11) the final concentrations observed were similar to the expected, aminophylline was also stable after 20h. When both drugs were associated in parenteral solutions of 20% mannitol, the use of HPLC showed stability for both drugs in the first 20h. The fluorescence intensity of GFP added to the samples was determined in spectrofluorometer (yex=394nm, yem=509nm), showing that fluorescence intensity was proportional to the drugs stability loss. Therefore, the utilization of fluorescence proteins is important to assure the drugs effectiveness and rational utilization in hospital places.
|
48 |
Feasibility of intra-articular adeno-associated virus-mediated proteoglycan-4 gene therapy to prevent osteoarthritisChoe, Hyeong Hun 01 July 2015 (has links)
Lubricin, or proteoglycan 4 (PRG4), is a secreted, glycosylated protein that binds to cartilage surfaces, which functions as a boundary lubricant. The loss of lubricin from cartilage is identified as a major pathogenic factor in post-traumatic osteoarthritis (PTOA) that has now been the aim of therapeutic intervention. Intra-articular injection of PRG4 protein provides short-term benefits that might be extended using sustained delivery methods such as in gene therapy.
Here we describe the development and testing of such therapy using adeno-associated virus (AAV) as a vector for the transfer of PRG4-green fluorescent protein (GFP) fusion gene. Our recombinant PRG4 gene produces a PRG4-GFP fusion protein to facilitate tracking of its expression and distribution on joint surfaces. We hypothesized that PRG4-GFP is fully functional as a cartilage lubricant and that PRG4-GFP produced in vivo is expressed by synoviocytes and other joint cells, and cartilage surfaces remained coated for several weeks up to months after intra-articular injection of the virus.
PRG4-GFP showed lubricin-like cartilage binding in vitro, and lubrication immunoblot analysis confirmed that purified PRG4-GFP from cultured media conditioned by PRG4-GFP-transduced synoviocytes was heavily glycosylated, while confocal microscopy revealed binding of the fluorescent fusion protein to cartilage surfaces. Metal-on-cartilage friction tests showed that PRG4-GFP reduced friction coefficients to a degree comparable to that of synovial fluid and had strong chondro-protective effects in explanted cartilage exposed to shear loading. The chondrocyte viability after shear loading showed that PRG4-GFP had a strong chondro-protective effect on par with that of the synovial fluid. Confocal microscopy and immunohistology confirmed that cartilage surfaces in the stifle joints of mice injected with viruses were coated with PRG4-GFP for up to 2 or 4 weeks after the treatment. The overexpression of PRG4-GFP and coating of cartilage surfaces in the stifle joints of mice injected with Adeno-Associated Virus for the transfer of PRG4-GFP fusion gene (AAV-PRG4-GFP) was confirmed by confocal microscopy and immunohistology for up to 2 or 4 weeks post-injection. The μCT imaging and immunohistology in AAV-PRG4-GFP injected rabbit knees showed stronger inhibition in degeneration of damaged tissues than in AAV-GFP injected control group. Collectively these findings indicate that AAV-PRG4-GFP transduction is a valuable new tool for evaluating the effects of long-term lubricant supplementation on PTOA in animal models.
|
49 |
A Synthetic Biological Engineering Approach to Secretion- Based Recovery of Polyhydroxyalkanoates and Other Cellular ProductsLinton, Elisabeth 01 May 2010 (has links)
The costs associated with cellular product recovery commonly account for as much as 80% of the total production expense. As a specific example, significant recovery costs limit commercial use of polyhydroxyalkanoates (PHA), which comprise a class of microbially-accumulated polyesters. PHAs are biodegradable compounds that are of interest as a sustainable alternative to petrochemically-derived plastics. Secretion-based recovery of PHAs was studied to decrease PHA production costs. Type I and II secretory pathways are commonly used for the translocation of recombinant proteins out of the cytoplasm of E. coli. Proteins were targeted for translocation using four signal peptides (HlyA, TorA, GeneIII, and PelB) that operate via type I and II secretory machinery. GFP translocation was investigated in parallel due to its relative ease of monitoring to gather information about the functionality of signal peptide sequences. The translocation of phasin was investigated because of its physical binding interaction with the PHA granule surface. Genetic fusion of phasin with targeting signal peptides creates a PHA-phasin-signal peptide complex that can then be potentially used for cellular export. An important design aspect of this investigation is that synthetic biological engineering principles and standardized technical formats BBF RFC 10 and BBF RFC 23 were applied for more efficient construction of genetic devices. As an additional part of this study, an 1H NMR-based PHA quantification method was developed to facilitate analysis of intracellular PHAs. Overall, this study demonstrated that the BioBrick model can be used to construct functional devices that promote secretion of cellular compounds. The information gathered from this work can be further optimized and applied to more complex cellular manufacturing systems.
|
50 |
Selection and isolation of high producing mammalian clonesShu, Cindy Chia-Fan, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2007 (has links)
This research studied recombinant DNA-derived protein expression utilising expression vectors containing IRES sequences to link the gene of interest with the gene encoding selectable marker in mammalian cell cultures. Polycistronic expression constructs utilising internal ribosome entry site (IRES) can link unrelated genes under control of a single promoter. Transient study on the IRESlinked gene expression was performed. It was possible to standardise the level of protein expression to plasmid number by determining the number of free plasmids in the cytoplasm. The expression of a selectable marker when downstream of IRES was reduced in comparison to the monocistronic construct. Importantly when IRES was used, there were no negative effects on recombinant gene expression upstream of IRES. Down-regulating the selectable marker gene expression has been shown to enhance the probability of obtaining highly expressing clones. To investigate the effects of down-regulating fusion metallothionein green fluorescent protein (MTGFP), new constructs were created to combine metal inducible M2.6 promoter to drive the expression of human growth hormone linked to MTGFP by an attenuated IRES. This resulted in less MTGFP expression, reduced survivability and mean fluorescence in the presence of heavy metal. The increased metal sensitivity lengthened the initial selection period using reduced metal concentration in comparison to cells transfected with wildtype MTGFP. FACS can be used to select for resistance conferred by MTGFP despite reduced expression. FACS enrichment and sorting increased the hGH expression, which was correlated with mean fluorescence of the population; therefore fluorescence can be used as an indication of the final recombinant protein expression. Different approaches to isolate suitable clones were also investigated. It is preferable to select the transfected pool in low metal concentration for two weeks, sort for cells of high-fluorescence, and allow for recovery and proliferation. It is then possible to amplify gene expression by culturing the clones in increasing metal, resulting in further improvement of recombinant protein expression.
|
Page generated in 0.0681 seconds