• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 16
  • 10
  • 7
  • 6
  • 2
  • 1
  • Tagged with
  • 116
  • 20
  • 18
  • 14
  • 12
  • 12
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Engineering the surface properties of microbubbles for biomedical applications

Mohamedi, Graciela January 2014 (has links)
Surfactant coated microbubbles are widely used as contrast agents (UCA) in medical ultrasound imaging, due to their high echogenicity and non-linear response to acoustic excitation. Controlling the stability of microbubbles in vivo represents a considerable challenge. Understanding the characteristics of the bubble surface and how they change with production method, composition and environment is key to addressing this problem. The aim of this thesis is to investigate viscosity, bubble dissolution, and acoustic response as functions of their composition, manufacturing method and environment. Bubbles were made using combinations of phospholipid and an emulsifier in different molar ratios. Adding the emulsifier decreased both the size and the surface viscosity of the bubbles and caused changes in the scattered pressure amplitude of bubbles under ultrasound. To increase microbubble stability, solid inorganic nanoparticles were adsorbed on to the microbubble surface. These particles behaved as Pickering stabilisers, and deterred Ostwald ripening. The nanoparticles also enhanced the nonlinear behaviour of bubbles at low acoustic pressures. Three manufacturing methods (sonication, cross-flow and flow focusing) were investigated in order to verify stability differences. Sonication produced bubbles with surface viscosities hundreds of centipoise greater than those produced by microfluidics. Both pressure amplitude and harmonic content for sonicated bubbles were found to be much larger due to a higher liposomal adhesion rate at the surface. Solution temperature and bubble age were also investigated. When the solutions were heated above the phospholipid gelling temperature, microfluidic bubbles showed an increased surface viscosity, due to increased liposome adhesion caused by the increased temperature. Bubble composition, manufacturing method and environment were found to vary the surface characteristics of the microbubbles. Further investigations into the affects of the filling gas, in vitro studies, and low temperature TEM characterisation should be conducted to produce a microbubble with the full range of desired characteristics.
42

Produção de blocos de concreto celular usando espumígeno de ácidos graxos de coco e resíduos de pedras roladas de ágata

Pedro, Rudimar January 2017 (has links)
O estado do Rio Grande do Sul é o terceiro maior produtor de pedras preciosas do Brasil, atrás apenas de Minas Gerais e da Bahia, destacando-se a produção de ágatas na região de Salto do Jacuí. Na lavra e beneficiamento são produzidos grandes quantidades de resíduos que estão a espera de destino e utilização ambientalmente correta. De modo específico, este trabalho avaliou a possibilidade de utilização do resíduo de ágata rolada na fabricação de blocos de concreto celular espumígeno (BCCE), utilizados como blocos de vedação na construção civil. Adicionalmente, desenvolveu-se uma mistura de dois agentes espumígenos provenientes de ácidos graxos de coco, como agente incorporador de ar, pela adição de espuma pré-formada. A metodologia de produção foi baseada no modelo de produção dos blocos de uma pequena indústria na Região de Passo Fundo/RS, que produz e comercializa BCCE. Em um estudo prévio de bancada, foram estudadas a composição da espuma, a granulometria do resíduo, o teor de água e o tempo de mistura. Os materiais componentes do BCCE são resíduo de sílica de pedras roladas de ágatas (SiO2 - 92,5%), espuma preparada com ácidos graxos de coco, água de qualidade potável e cimento como agente aglomerante. Nos testes de bancada, foram confeccionados 36 corpos de prova, em forma cilíndrica, de tamanho 50 mm de diâmetro por 100 mm de altura, com diferentes volumes de ar incorporado, divididos em três grupos. As amostras foram deixadas durante 28 dias à temperatura ambiente, em processo de cura, e após foram analisados quanto à resistência à compressão, densidade e distribuição das bolhas de ar. Os resultados foram avaliados pela Análise de Variância e demonstraram que o Grupo II apresentou densidade de 430 Kg/m3, e resistência de 0,92 MPa. Este resultado está próximo do atendimento aos requisitos da norma para classe de resistência de < 400 Kg/cm3 (NBR 13438, 2013). / The state of Rio Grande do Sul is the third largest producer of gemstones in Brazil, only losing to the states of Minas Gerais and Bahia, and agate production stands out in the region of Salto do Jacuí. Great amounts of waste, which are waiting for environmentally correct destination and use, are produced in mining and processing. Particularly, this study assessed the potential use of rolling waste of agates in civil construction, and the manufacturing of foam concrete blocks as a full substitute for sand. Additionally, a mixture was made of two foaming agents derived from coconut fatty acids as air-developer agent, and as hydraulic binder the Portland CP V ARI-RS cement. The production methodology was based on the production model of the blocks in a small industry, which produces and sells foam concrete blocks in the region of Passo Fundo, RS, Brazil. In a previous bench study the parameters foam composition, residue granulometry, water content, and mix time were adequate and later replicated industrially. The materials composing foam concrete blocks are rolled agate stones silica (SiO2 – 92.5%), foam from coconut fatty acids, fresh water, and cement as binder. In bench tests, 36 cylindrical specimens were produced, with 50 mm of diameter and 100 mm of height, with different volumes of incorporated air, divided into three groups. The samples were kept at room temperature for 28 days with healing process, and after that, the resistance to compression, density, and air bubbles distribution were analyzed. Results were assessed by Analysis of Variance, and showed that Group II presented density of 430 Kg/m3 and resistance of 0.92 MPa. This result is close to meeting the requirements of the norm for resistance class of < 400 Kg/cm3 (NBR 13438, 2013).
43

Moussage de polymères par des procédés physiques / Physical foaming of polymers

Dubois, Julie 02 December 2016 (has links)
Cette thèse porte sur la production et l’étude de mousses polymères microporeuses, par dissolution de gaz. Plusieurs techniques expérimentales ont été améliorées ou adaptées pour la réalisation des mousses et la caractérisation des systèmes étudiés. De plus il est démontré que les paramètres du procédé, tels que la pression et la température, permettent la différenciation entre les différentes voies de moussage utilisées. Ceux-ci ont une influence significative sur les caractéristiques finales des mousses. / This dissertation focuses on the production and study of microcellular polymer foams by gas dissolution foaming. Due to the novelty of this research field several experimental techniques have been improved or adapted to produce the foams but also to provide valuable information from the systems understudy. It is demonstrated that processing parameters, such as pressure and temperature, allow differentiating between our foaming routes, and present a significant influence on the foaming process and final characteristics of foam.
44

THERMAL, INTERFACIAL, AND APPLICATION PROPERTIES OF PEA PROTEIN MODIFIED WITH HIGH INTENSITY ULTRASOUND

Koosis, Aeneas 01 January 2019 (has links)
The overall objective of the study was to investigate different food ingredient conditions and ultrasound treatment on pea protein in terms of surface morphology and thermal characteristics. The motivation of this work was based on previous studies focusing on non-chemical physical modifications of plant proteins and the increasing demand for functional alternative proteins. Ultrasonication time and amplitude, pH, protein concentration, and salt concentration all influenced the thermal and interfacial properties of pea protein. Ultrasound treatment altered the quaternary and tertiary structure of the storage protein and disrupted non-covalent bonds. The structural altercations and a reduction in particle size led to improved functionality. For foams generated at pH 5.0 with 4% (w/v) ultrasound treated protein, the foams had acceptable capacity and stability even when high levels of sugar (5% sucrose) and salt (0.6 M) were incorporated. An acceptable angel food cake simulation can be achieved by replacing egg white with ultrasound treated pea protein. Color and loaf height were different, but similar texture profiles were achieved. Ultrasound treatment significant improved the emulsifying capacity (up to 1.4 fold), emulsion stability, and creaming index compared to control samples (no ultrasound) over two weeks. The ultrasound treated emulsion yielded lower TBARS values, likely due to the change in exposed protein reactive groups. These findings demonstrate that ultrasound processing is an effective nonchemical method to change the structural and physiochemical properties of pea protein. Pea protein processed with this method might allow for the functionality in a bakery, dressings, or beverage products, which is appealing to many consumers and manufacturers.
45

Etude du pouvoir moussant de la gélatine en relation avec ses propriétés physico-chimiques

Nicolay, Laurence 06 October 1993 (has links)
L'étude du pouvoir moussant de la gélatine trouve son origine dans un problème industriel important, non résolu jusqu'à présent : le choix des lots de gélatine en fonction des applications (par exemple : les gelées sucrées ou salées ainsi que les gommes nécessitent pour leur fabrication des gélatines peu moussantes ; les produits foisonnés et les "lards" requièrent des gélatines à pouvoir moussant élevé). Pour ce faire, quatre objectifs ont été définis : la caractérisation du pouvoir moussant de la gélatine - la mise en évidence des paramètres influençant les propriétés moussantes - la maîtrise de la formation non contrôlée de mousse spontanée dans les solutions de gélatine - la définition du process à appliquer à la matière première pour l'obtention de gélatine de pouvoir moussant souhaité. Dans le cadre de ce travail, seuls les deux premiers objectifs ont été entièrement réalisés.
46

A study of some aspects of gas-slag-metal interactions : Towards dynamic process model and control

Ek, Mattias January 2012 (has links)
The present thesis deals with the development of a new type of dynamic model for metallurgical reactors. It also covers some of the theoretical aspects of steelmaking that is necessary to include in such an application. The thesis consists of modeling work, high temperature experiments and cold model experiments. Two different aspects of slags in the oxygen steelmaking were investigated. In the first study, slag samples were equilibrated with copper at 1923K in order to study their capacities in capturing phosphorous. Some of the samples were liquid-solid mixtures. The solid phases in these samples were identified by SEM analysis. The identified phases were found to agree well with Thermocalc calculations while the amount of solid fractions didn’t. The phosphorous distribution between the different phases was examined. The phosphate capacities of the samples were evaluated. The MgO content didn’t show any appreciable impact on the phosphate capacity. Furthermore the activities of FeO in the liquid slag samples were calculated and were found to deviate positively from ideality. In the second study the foaming height of CaO-SiO2-FeO slags by the reaction with hot metal was investigated. It was found that the foaming height increased with increasing FeO content up to 20-25%. The foaming height was seen to decrease with increased viscosity. The present results indicated that simply using foaming index for converter slag might lead to wrong conclusion. Simulation experiments using cold model at room temperature were conducted. Cold model experiments were carried out in order to study the penetration depth due to an impinging gas jet on the surface of a liquid metal. The liquid alloy Ga-In-Sn was used to simulate steel. And an HCl solution was used to simulate the slag. A comparison with predictions of existing models was made and a new model parameter was suggested. The observation of the movement of metal droplets generated by the gas jet was also made. The low velocity of droplets suggested that the turbulent viscosity played important role and the droplets could have long resident time in the slag. Furthermore a study of the effect of gas flow rate on homogenization and inclusion removal in a gas stirred ladle was carried out. Both industrial trials and cold model experiments were conducted. As an auxiliary tool CFD was used to predict the mixing times and was found to agree well with both the model experiments and industrial data. The increase of flow rate of inert gas would not improve the mixing substantially at higher flow rates. The water model study showed also that the gas flow rate had negligible effect on the rate of inclusion removal. Both the experiments and CFD calculation strongly suggested that low gas flow rate should be applied in the ladle treatment. Lastly a new approach to a dynamic process model of 300 ton BOF converter was made. The main feature was to utilize the velocity vectors obtained by CFD simulation. In the standalone model, the steel melt domain was sliced into 1000 cells. Based on the imported velocity vectors from the CFD calculation, the mass transfer of carbon and phosphorus was calculated taking into account the slag metal reactions. The mass exchange between slag and metal was considered to be dominated by the metal droplet formation due to oxygen jet. The convergence of the model calculation and the promising comparison between the model prediction and the industrial data strongly suggested that the proposed approach would be a powerful tool in dynamic process control. However, more precise descriptions of other process aspects need to be included before the model can be practically employed in a dynamic controlling system. / <p>QC 20120829</p>
47

Synthesis and characterization of surfactants based on natural products

Piispanen, Peter January 2002 (has links)
No description available.
48

Energy and environmental optimization of some aspects of EAF practice with novel process solutions

Chychko, Andrei January 2010 (has links)
The objective of the present thesis is to optimize the electric arc furnace (EAF) practice from an environmental view point. Two aspects that meet the requirements of the secondary steelmaking industries today, viz. Mo alloying with maximum retainment of the alloying element in molten steel and optimization of foaming by carbonate addition with a view to optimize the energy need of the process. Both these aspects would also have a significant impact on the process economy. Iron molybdate (Fe2MoO4) has been synthesized from commercial grade materials and proposed as a new potential precursor for steel alloying with Mo. The thermal stabilities of different molybdates, viz. Fe2MoO4, CaMoO4 and MgMoO4, were studied using thermogravimetry analysis (TGA). It was found that Fe2MoO4 is the most stable one and doesn’t evaporate in Ar atmosphere when heating up to 1573 K. The synthesis of Fe2MoO4 requires high temperature (1373 K) and long holding time (up to 16 hours). In a view of this, the possibilities for in-situ formation of Fe2MoO4 and CaMoO4 from their precursor mixtures were studied with the aid of high-temperature X-ray diffraction (XRD) and TGA analysis. Laboratory and industrial trials on steel alloying with Mo were conducted using precursor mixtures as sources of Mo. It was found that the mixture, which contains FeOx, MoO3 and C (Fe2MoO4 precursor), can provide the Mo yield up to 98 % at both the laboratory as well as industrial trials. The Mo yields even in the case of C+MoO3 and C+MoO3+CaO mixtures were around 93 % in these trials. The higher yield for the MoO3+C+FeOx mixture was attributed to the stabilization of Mo in the precursor (marked by the decrease in the Gibbs energy of Mo) and the readiness to dissolve in the steel bath. The heat effect of the slag foaming with carbonates addition was studied at 1623 and 1673 K with the aid of thermal analysis technique with a new crucible design. Experiments were conducted by adding limestone and dolomite pieces of defined shapes (together with iron sinkers) in molten slag and monitoring the temperature changes accompanying the decomposition of carbonates. It was found that the decomposition energies for dolomite and limestone for the studied slag composition are in the range 56-79 % of theoretical values, which is linked to the energy saving effect of slag foaming. No influence of sample shape on decomposition energy was found both for limestone and dolomite. The kinetics of slag foaming by limestone particles was studied at 1773 K with the aid of X-ray imaging system. A model was proposed to describe the decrease in foam height with time on the basis of CaO shell formation during decomposition reaction. The energy impact of limestone and raw dolomite addition was examined in a 100-ton EAF. It was found that, in the case of addition of carbonates after the scrap is completely molten; the endothermic heat effects for limestone and dolomite (2255 and 2264 kJ/kg respectively) were only 70 % from theoretical values. This is indicative of the resistance to heat transfer due to increased foaming. / QC 20100914
49

In Situ Observation of Plastic Foaming under Static Condition, Extensional Flow and Shear Flow

Wong, Anson Sze Tat 31 August 2012 (has links)
Traditional blowing agents (e.g., hydrochlorofluorocarbons) in plastic foaming processes has been phasing out due to environmental regulations. Plastic foaming industry is forced to employ greener alternatives (e.g., carbon dioxide, nitrogen), but their foaming processes are technologically challenging. Moreover, to improve the competitiveness of the foaming industry, it is imperative to develop a new generation of value-added plastic foams with cell structures that can be tailored to different applications. In this context, the objective of this thesis is to achieve a thorough understanding on cell nucleation and growth phenomena that determine cell structures in plastic foaming processes. The core research strategy is to develop innovative visualization systems to capture and study these phenomena. A system with accurate heating and cooling control has been developed to observe and study crystallization-induced foaming behaviors of polymers under static conditions. The cell nucleation and initial growth behavior of polymers blown with different blowing agents (nitrogen, argon and helium, and carbon dioxide-nitrogen mixtures) have also been investigated in great detail. Furthermore, two innovative systems have been developed to simulate the dynamic conditions in industrial foaming processes: one system captures a foaming process under an easily adjustable and uniform extensional strain in a high temperature and pressure environment, while the other achieves the same target, but with shear strain. Using these systems, the extensional and shear effects on bubble nucleation and initial growth processes has been investigated independently in an isolated manner, which has never been achieved previously. The effectiveness of cell nucleating agents has also been evaluated under dynamic conditions, which have led to the identification of new foaming mechanisms based on polymer-chain alignment and generation of microvoids under stress. Knowledge generated from these researches and the wide range of future studies made possible by the visualization systems will be valuable to the development of innovative plastic foaming technologies and foams.
50

In Situ Observation of Plastic Foaming under Static Condition, Extensional Flow and Shear Flow

Wong, Anson Sze Tat 31 August 2012 (has links)
Traditional blowing agents (e.g., hydrochlorofluorocarbons) in plastic foaming processes has been phasing out due to environmental regulations. Plastic foaming industry is forced to employ greener alternatives (e.g., carbon dioxide, nitrogen), but their foaming processes are technologically challenging. Moreover, to improve the competitiveness of the foaming industry, it is imperative to develop a new generation of value-added plastic foams with cell structures that can be tailored to different applications. In this context, the objective of this thesis is to achieve a thorough understanding on cell nucleation and growth phenomena that determine cell structures in plastic foaming processes. The core research strategy is to develop innovative visualization systems to capture and study these phenomena. A system with accurate heating and cooling control has been developed to observe and study crystallization-induced foaming behaviors of polymers under static conditions. The cell nucleation and initial growth behavior of polymers blown with different blowing agents (nitrogen, argon and helium, and carbon dioxide-nitrogen mixtures) have also been investigated in great detail. Furthermore, two innovative systems have been developed to simulate the dynamic conditions in industrial foaming processes: one system captures a foaming process under an easily adjustable and uniform extensional strain in a high temperature and pressure environment, while the other achieves the same target, but with shear strain. Using these systems, the extensional and shear effects on bubble nucleation and initial growth processes has been investigated independently in an isolated manner, which has never been achieved previously. The effectiveness of cell nucleating agents has also been evaluated under dynamic conditions, which have led to the identification of new foaming mechanisms based on polymer-chain alignment and generation of microvoids under stress. Knowledge generated from these researches and the wide range of future studies made possible by the visualization systems will be valuable to the development of innovative plastic foaming technologies and foams.

Page generated in 0.0502 seconds