• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 44
  • 27
  • 16
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 249
  • 44
  • 41
  • 30
  • 27
  • 27
  • 26
  • 24
  • 24
  • 23
  • 22
  • 22
  • 19
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Properties of Rigid Foams for Application as Materials for Light Weight Structures in Space

Chi, Huichen 01 May 1993 (has links)
The mechanical and mesoscopic structural properties of rigid cellular foam made of polystyrene have been investigated. Basic properties (e.g., density, total and available porosity, permeability, surface area, isotropicity, and cell size and cell wall thickness distributions) were measured. In most cases, alternative methods were used to determine which methods were most appropriate for the type of samples we studied. Standard compression and deflection mechanical tests were performed. The stress-strain curves and related mechanical properties were found to agree with standard cellular structural models of open-cell foams. We investigated the effects of small (~<5 atm) hydrostatic stress applied to foam samples for long periods of time (~one day). We observed large changes (up to a factor of three) in the stress-strain diagrams, Young's modulus, elastic collapse stress, ultimate strength, resilience, Poisson's ratio, permeability, penetration depth, and available porosity. Effects were most pronounced above 2 atm applied pressure differential, but were observed even for 1 atm loads. Short-term exposure to loads up to ten times as large did not cause comparable changes. These changes were interpreted as resulting from observed changes in the mesoscopic structure occurring near the surface using standard cellular structural models. This work was originally motivated by applications of foam as an inflating agent and structural component of fiber-epoxy composite tubular struts to be used in innovative space structures. The key recommendations of this study, regarding such applications, are to closely monitor the effects on the mechanical properties of polystyrene foam of: (1) cell structure and density inhomogeneities, and (2) pressure differentials which may be encountered during deployment and curing.
62

Fracture analysis of glass microsphere filled epoxy resin syntactic foam

Young, Peter, Aerospace, Civil & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2008 (has links)
Hollow glass microspheres have been used extensively in the automotive and marine industries as an additive for reducing weight and saving material costs. They are also added to paints and other materials for their reflective properties. They have shown promise for weight critical applications, but have thus far resulted in materials with low fracture toughness and impact resistance when combined with thermosetting resins in syntactic foam. The advent of commercially available microspheres with a wide range of crushing strengths, densities and adhesive properties has given new impetus to research into syntactic foam with better fracture behaviour. Current research suggests that the beneficial effects on fracture and impact resistance gained by the addition of solid reinforcements such as rubber and ceramic particles are not seen with the addition of hollow glass microspheres. The research presented in this paper has examined the mechanisms for fracture resistance in glass microsphere filled epoxy (GMFE) syntactic foams, as well as determined the effect microsphere crushing strength and adhesion strength has on the material???s fracture toughness. The flexural properties of various GMFE have also been determined. GMFE were manufactured with varying microsphere volume fraction up to 50%, and with variances in microsphere crushing strength and adhesion. The specimens were tested for Mode I fracture toughness in a three point single edge notched bending setup as described in ASTM D5045 as well as a three point flexural setup as described in ASTM D790-3. Fracture surfaces were inspected using scanning electron microscope imaging to identify the fracture mechanisms in the presence of microspheres. Results indicate a positive effect on fracture toughness resulting from new fracture areas created as tails in the wake of the microspheres in the fracture plane. Results also indicate a negative effect on fracture toughness resulting from weak microspheres or from interfacial disbonding at the fracture plane. These two effects combine to show an increase in GMFE fracture toughness as the volume fraction of microspheres is increased to between 10 ??? 20% volume fraction (where the positive effect dominates), with a reduction in fracture toughness as microspheres are added further (where the negative effect dominates).
63

Polyurethanes plastic sheets and foams synthesized from aromatic triols

Dumont, Marie-Jose 06 1900 (has links)
Novel plastic sheets and foams from vegetable oil-based monomers were produced. These new polyurethanes were synthesized from aromatic polyols, with erucic acid as the starting material. These monomers have the unique feature of containing an aromatic ring which was hypothesized to improve the rigidity of the polyurethane matrices and the overall physical properties of the plastics and foams. The benefits of the aromatic ring were proposed to be enhanced due to three terminal primary hydroxyl groups within the structure of the polyols. Reactions to produce hexasubstituted benzene derivatives containing alcohol groups in positions 1,2,4- and 1,3,5- around the benzene ring were suitably scaled up to provide amounts necessary for polyurethane production and characterization. These isomers (asymmetric and symmetric triols) were separated using chromatography. The pure triols were crosslinked with 4,4-methylenebis(phenyl isocyanate) into polyurethanes sheets (asymmetric and symmetric polyurethane respectively). The physico-chemical properties of these PUs were studied by Fourier transform infrared spectroscopy, x-ray diffraction,, differential scanning calorimetry dynamic mechanical analysis, thermogravimetric analysis coupled with Fourier transform infrared spectroscopy, and tensile analysis. The asymmetric polyurethane sheet and the symmetric polyurethane sheet differed in their glass transition temperatures and crosslinking densities. This variation could be explained by the differences in crosslinking densities, related to the increase in steric hindrance between adjacent hydroxyl groups of the asymmetric triol monomers. It was found that both polyurethanes had similar mechanical and thermal properties. Due to the similar properties of the asymmetric polyurethane and symmetric polyurethane sheets, the monomers were combined together in order to synthesize PU foams. The physical properties of these foams were studied by Fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical analysis, scanning electron microscopy, thermogravimetric analysis and were analyzed for close cell content and compression strength. The effect of the benzene ring in the monomer structure on the physical properties of these new polyurethane foams was mainly compared with high density canola polyurethane foams previously investigated. It was demonstrated that the physical properties of polyurethane foams made with aromatic monomers are comparable to those made with aliphatic monomers when enhanced with glycerol. / Bioresource and Food Engineering
64

Development of a three-dimensional compositional hydraulic fracturing simulator for energized fluids

Ribeiro, Lionel Herve Noel 19 December 2013 (has links)
Current practices in energized treatments, using gases and foams, remain rudimentary in comparison to other fracturing fluid technologies. None of the available 3D fracturing models for incompressible water-based fluids have been able to capture the thermal and compositional effects that are important when using energized fluids, as their constitutive equations assume single-phase, single-component, incompressible fluid flow. These models introduce a bias in fluid selection because they do not accurately capture the unique behavior of energized fluids. The lack of modeling tools specifically suited for these fluids has hindered their design and field implementation. This work uses a fully compositional 3D fracturing model to answer some of the questions surrounding the design of energized treatments. The new model is capable of handling any multi-component mixture of fluids and chemicals. Changes in fluid density, composition, and temperature are predicted using an energy balance equation and an equation of state. A wellbore model, which relates the surface and bottomhole conditions, determines the pumping requirements. Fracture performance is assessed by a fractured well productivity model that accounts for damage in the invaded zone and finite fracture conductivity. The combination of the fracture, productivity, and wellbore models forms a standalone simulator that is suitable for designing and optimizing energized treatments. The simulator offers a wide range of capabilities, making it suitable for many different applications ranging from hydraulic fracturing to long-term injections for enhanced oil recovery, well clean-up, or carbon sequestration purposes. The model is applicable to any well configuration: vertical, deviated, or horizontal. The resolution of the full 3D elasticity problem enables us to propagate the fracture across multiple layers, where height growth is controlled by the vertical distribution of the minimum horizontal stress. We conducted several sensitivity studies to compare the fracture propagation, productivity, and pumping requirements of various fluid candidates in different reservoirs. The results show that good proppant placement and high fracture conductivities can be achieved with foams and gelled fluid formulations. Foams provide a wide range of viscosities without using excessive amounts of gelling agents. They also provide superior fluid-loss control, as the filter-cake is supplemented by the presence of gas bubbles that reduce liquid-flow into the porous medium. CO₂, LPG, and N₂ expand significantly (by 15% or more) as the reservoir heats the fluid inside the fracture. These fluids show virtually no damage in the invaded zone, which is a significant improvement upon water-based fluids in reservoirs that are prone to water blocking. These results, however, are contingent on an accurate fluid characterization supported by experimental data; therefore, our work advocates for complementary experimental studies on fluid rheology, proppant transport, and fluid leak-off. A comprehensive sensitivity study over a wide range of reservoir conditions identified five key reservoir parameters for fluid selection: relative permeability curve, initial gas saturation, reservoir pressure, changes to rock mechanical properties, and water-sensitivity. Because energized fluids provide similar rheology and leak-off behaviors as water-based fluids, the primary design question it to evaluate the extent of the damaged zone against costs, fluid availability, and/or safety hazards. If the fluid-induced damage is acceptable, water-based fluids constitute a simple and attractive solution; otherwise, energized fluids are recommended. Notably, energized fluids are well-suited for reservoirs that are depleted, under-saturated, and/or water-sensitive. These fluids are also favorable in areas with a limited water supply. As water resources become constrained in many areas, reducing the water footprint and the environmental impact is of paramount concern, thereby making the use of energized treatments particularly attractive to replace or subsidize water in the fracturing process. / text
65

Extraction of chitin nanofibers and utilization for sustainable composites and foams

Wu, Jie 21 September 2015 (has links)
Developing renewable materials to reduce the dependence on fossil fuel as a feedstock for a wide range of applications is becoming increasingly acknowledged as important in society. Chitin, the second most abundant biopolymer in nature, is an ideal candidate for diverse applications because of its remarkable properties, such as abundance, renewability, biodegradability, biocompatibility, antibacterial activity, chemical functionality, and high stiffness and strength. Despite these inherent advantages, chitin is currently still underutilized mainly due to its strong molecular interactions, which make it insoluble in common solvents. Currently, its major applications are limited to biomedical engineering, such as tissue engineering, wound dressing and sutures. This thesis aims to explore and enable the potential utilization of chitin in other fields where it may serve as a renewable functional advanced material. Here, a number of novel chitin-based materials were developed successfully without employing chitin dissolution. These include chitin nanofibers (CNFs), porous chitin with tunable structures, chitin-reinforced polymer composites and chitin-stabilized aqueous foams. Moreover, the properties of these materials including interfacial, optical, thermal, and mechanical characteristics were determined, and their potential utilizations were demonstrated. Briefly, in chapter 2, CNFs with diameters of ~20 nm were successfully extracted from crab α-chitin by a high pressure homogenization process. The produced CNFs were dispersed well in water without forming strong network structures due to their electrostatic repulsions. The obtained CNF film has a high residue amount (40%) when heated up to 1000 ˚C. Meanwhile, it exhibited high optical transparency as well as great gas barrier properties. In chapter 3, on the basis of the obtained CNFs in chapter 2, versatile porous structures including oriented sheets and three-dimensional aperiodic nanofiber networks were achieved by using a freeze drying technique. Since the formation of nanofibrous structures cannot be predicted by the widely-used particle encapsulation model, a modified structure formation mechanism was proposed. In chapter 4, the structure-property relationships of the CNF/poly(ethylene oxide)(PEO) nanocomposites were established. We demonstrated that the CNFs formed network structures in PEO matrix and had hydrogen bonding interaction with PEO. The CNFs can greatly enhance the mechanical properties of PEO, such as elastic modulus and tensile strength. In chapter 5, the aqueous foams stabilized by high-aspect-ratio CNFs were developed. The created foams exhibited strong hindrance on film drainage, coalescence and disproportionation. The fibrillated CNFs alone were not able to stabilize air bubbles, but the addition of small amounts of valeric acids in CNF dispersion can make chitin foamable. The results clearly showed that valeric acid modified CNFs reduced the surface tension of aqueous dispersion and were attached at the air-water interface. Overall, this research has provided many new insights for the fabrication, characterization, and utilization of chitin, and has built a solid foundation for further exploiting chitin for diverse applications.
66

Polyurethanes plastic sheets and foams synthesized from aromatic triols

Dumont, Marie-Josée Unknown Date
No description available.
67

Analysis of Fire Performance, Smoke Development and Combustion Gases from Flame Retarded Rigid Polyurethane Foams

Adeosun, David January 2014 (has links)
Rigid polyurethane foam is a polymeric material which is widely used for thermal insulation in building construction and other applications. Given recent emphasis on energy conservation and efficiency, there has been continuous growth in its use over the years. This raises significant fire safety concerns since polyurethanes are inherently very flammable and prone to release toxic gases as the foam thermally decomposes and burns. To improve fire safety characteristics by reducing ignitability and flammability of the foams, various flame retardants (FR) have been introduced into base foam formulations. But with the introduction of FR agents, there has been rising concern within the fire safety community and general public regarding the overall benefits versus detrimental impacts of even commonly used FR agents. In the case of rigid polyurethane foam, however, such an assessment is difficult as there are few cross comparisons in the literature that detail the impacts of different concentrations of common fire retardants, such as brominated, phosphorus-based and expandable graphite agents, on the fire behavior, smoke development and toxic gas production for even single base foam formulations. The present experimental work focuses on a systematic evaluation of these factors using three common, commercial fire retardants added in concentrations of 0%wt, 10%wt and 20%wt to a single formulation of rigid polyurethane foam. Cone calorimeter and smoke density tests are used to simulate well ventilated and poorly ventilated fire conditions during material fire performance assessment, while FTIR, Novatech P 695 gas analyzers and TD-GC/MS methods are used to investigate the gases evolved during oxidative pyrolysis and combustion of the samples. Concentration measurements of principal fire gases such as CO, CO2, reduced O2, and NOx are combined with more detailed investigation of the volatile organic compounds generated during the fire testing. Use of gas absorption sampling followed by off-line Thermal Desorption/Gas Chromatography/Mass Spectrometry (TD-GC-MS) analysis for identification of toxic gases has proven of significant benefit in this application. The full set of data obtained provides a more comprehensive identification of the evolved products during three characteristic periods in the combustion process. As such, it expands current knowledge and provides valuable new insight and understanding of thermal degradation, combustion and smoke development, as well as overall fire performance, of fire retarded rigid polyurethane foams in well-ventilated and poorly ventilated environments.
68

Fracture analysis of glass microsphere filled epoxy resin syntactic foam

Young, Peter, Aerospace, Civil & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2008 (has links)
Hollow glass microspheres have been used extensively in the automotive and marine industries as an additive for reducing weight and saving material costs. They are also added to paints and other materials for their reflective properties. They have shown promise for weight critical applications, but have thus far resulted in materials with low fracture toughness and impact resistance when combined with thermosetting resins in syntactic foam. The advent of commercially available microspheres with a wide range of crushing strengths, densities and adhesive properties has given new impetus to research into syntactic foam with better fracture behaviour. Current research suggests that the beneficial effects on fracture and impact resistance gained by the addition of solid reinforcements such as rubber and ceramic particles are not seen with the addition of hollow glass microspheres. The research presented in this paper has examined the mechanisms for fracture resistance in glass microsphere filled epoxy (GMFE) syntactic foams, as well as determined the effect microsphere crushing strength and adhesion strength has on the material???s fracture toughness. The flexural properties of various GMFE have also been determined. GMFE were manufactured with varying microsphere volume fraction up to 50%, and with variances in microsphere crushing strength and adhesion. The specimens were tested for Mode I fracture toughness in a three point single edge notched bending setup as described in ASTM D5045 as well as a three point flexural setup as described in ASTM D790-3. Fracture surfaces were inspected using scanning electron microscope imaging to identify the fracture mechanisms in the presence of microspheres. Results indicate a positive effect on fracture toughness resulting from new fracture areas created as tails in the wake of the microspheres in the fracture plane. Results also indicate a negative effect on fracture toughness resulting from weak microspheres or from interfacial disbonding at the fracture plane. These two effects combine to show an increase in GMFE fracture toughness as the volume fraction of microspheres is increased to between 10 ??? 20% volume fraction (where the positive effect dominates), with a reduction in fracture toughness as microspheres are added further (where the negative effect dominates).
69

Development of macro/nanocellular foams in polymer nanocomposites

Bhattacharya, Subhendu, subhendu.bhattacharya@rmit.edu.au January 2009 (has links)
This thesis focuses on the generation of fine cell polymer foams using a heterogeneous nucleating agent (nanoclay), appropriate polymer blending strategies and accurate control of foam processing parameters. Foaming behaviour of HMSPP/ clay nanocomposites and HMS-PP/EVA/clay nanocomposite blends is studied using a batch and a continuous foam injection moulding system. Morphological studies using TEM and SEM led to a few interesting deductions. It is very difficult to attain complete exfoliation in case of HMS-PP/clay nanocomposites even at low clay loadings due to a non polar nature and low graft efficiencies of HMS-PP matrix. The addition of clay to an immiscible blend of HMS-PP/EVA results in compatibilization between the dispersed and the continuous phase. Nanocellular foams (290 nm) were subsequently generated in the batch process at a foaming temperature of 147oC and 25 seconds foaming time. The addition of immiscible EVA-28 to the HMS-PP matrix in presence of clay particles further results in reduction of foam cell sizes to 100 nm. The effect of gas concentration, foaming temperature, injection pressure, and foaming time on foam cell size was studied. It was found that the foam cell size was highly sensitive to the injection pressure at the mould gate (hence pressure drop rate) and foaming temperature. The cell size linearly decreased with increase in gas concentration and foaming time. The sensitivity of foam cell sizes to changes in processing parameters decreases with increase in clay concentration. The effect of addition of clay particle on gas solubility was modelled using the Guggenheims contact fraction approach and subsequently a new model to predict gas solubility was developed using statistical thermodynamic tools. Additionally the effect of shear and extensional rheology on foam cell morphology was modelled. It was found that the viscoelasticity of the polymer matrix greatly affects cell sizes as compared to extensional viscosity.
70

Development of a novel robotically effected plastic foam sculpting system for rapid prototyping and manufacturing : a thesis presented for the degree of masters in mechanical engineering in the University of Canterbury /

Posthuma, Anton. January 1900 (has links)
Thesis (M.E.)--University of Canterbury, 2007. / Typescript (photocopy). "May 2007." Includes bibliographical references (leaves 121-122). Also available via the World Wide Web.

Page generated in 0.0161 seconds