• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 44
  • 27
  • 16
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 249
  • 44
  • 41
  • 30
  • 27
  • 27
  • 26
  • 24
  • 24
  • 23
  • 22
  • 22
  • 19
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Characterisation of the flexural behaviour of aluminium foam composite sandwich structures /

Styles, Millicent. January 2008 (has links)
Thesis (Ph.D.) -- Australian National University, 2008. / CD Rom contains Appendix - movie files in .mpg format produced using the Aramis optical strain measurement system during this project.
22

Aluminium foam production using calcium carbonate as a foaming agent

Curran, David Charles January 2004 (has links)
The current state of the art with regards to the production of metallic foams is reviewed, with melt-based processes identified as the most promising for cost-effective large-scale production. The potential for metal carbonates as an alternative to currently-used titanium hydride foaming agents is explored, with calcium carbonate identified as the most suitable. The influence of a range of material and processing parameters on the stability of metallic foams in the molten state is discussed, and current methods of controlling melt viscosity and surface tension are reviewed. Characteristic features of the compressive deformation of metallic foams are described in the context of use as an impact-absorbing material, with a review of work in the literature linking the bulk mechanical properties to details of the cell structure. Calcium carbonate is found to be a highly effective foaming agent for aluminium. The foams obtained have notably finer cell structures than can be achieved in foams produced with titanium hydride, coupled with enhanced stability in the molten state. This is attributed to the presence of a thin continuous surface film of metallic oxide that counteracts the effect of surface tension. This film, combined with the finer cell structure of the calcium carbonate-based foams, is found to significantly reduce the rate of gravity drainage of the melt. The formation of the thin oxide film during foaming gives rise to a number of artefacts on the cell surface, including stretch marks and tear bands. A range of chemical and surface analysis techniques are used to identify the chemical composition and thickness of the oxide film. The distribution of refractory particles in the cell faces, which are commonly employed to stabilise molten foam structures, is found to be highly non-uniform in foams which undergo significant gravity drainage of liquid metal during the foaming process. Experiments in which the concentration of particles is varied demonstrate the importance of their effect on the melt viscosity in addition to their known role as a surface stabilising phase. The effect of alloy content and foaming gas on the stability of standing molten foams is also investigated in the context of other foaming processes. The formation of an oxide film on the surface of the cells is shown thermodynamically to be a necessary step in the production of low-density aluminium foams with a calcium carbonate foaming agent. A temperature-dependent upper limit on porosity is observed. It is established that this is the result of inhibition of the calcium carbonate decomposition reaction by its products as the thickness of the surface oxide film increases. The effect of varying cell size, porosity and chemical composition on the thickness of the surface oxide film is derived. The rate of thermal decomposition of calcium carbonate is found to be dominated by the partial pressure of carbon dioxide, with particle size and small impurity contents having only a small effect. Compressive mechanical properties of the foams produced are compared with those of foams produced with a titanium hydride foaming agent and theoretical predictions. A reduced cell size apparently minimises the influence of point defects on the properties of specimens of finite dimensions. A significant difference in the shape of the stress-strain curves of calcium carbonate- and titanium hydride-based foams is noted, with the latter marked by extensive serrations. This difference is demonstrated to be independent of differences in cell size. Microstructural analysis of foams in various stages of failure suggests that this is due to differences in the distribution of refractory particles in the two foams, which is in turn a consequence of the reduced extent of gravity drainage of liquid metal in the calcium carbonate-based foams.
23

Tailoring Cellulose Nanocrystal, Polymer and Surfactant Interactions for Gels, Emulsions, and Foams

Hu, Zhen 06 1900 (has links)
This thesis describes the investigation of the properties of cellulose nanocrystals (CNCs) in water and at interfaces in the presence of different water-soluble polymers and surfactants. The potential of producing hydrogels, emulsions, and foams using both CNCs and surfactants and polymers is extensively explored herein. Interactions between CNCs and polymers were studied by measuring adsorption of polymers on CNC-coated surface in quartz crystal microbalance with dissipation monitoring (QCM-D) and surface plasmon resonance (SPR) instruments. Hydroxyethyl cellulose, hydroxypropyl guar, and locust bean gum adsorbed onto CNC-coated surfaces, whereas dextran did not adsorb. Gelation of CNC dilute dispersions was found for the samples added with adsorbing polymers, whereas the introduction of non-adsorbing polymers showed no such change of rheological behaviors of CNC dilute dispersions. The further addition of negative surfactant SDS or non-ionic surfactant Triton X-100 disrupted the gels whereas cationic surfactant CTAB did not. These behaviors illustrate the complexities associated with including CNC dispersions in formulated water-based products where polymers and surfactants are commonly used as well. The adsorption of cationic surfactants on CNC particle surfaces and the associated change of CNC hydrophobicity were investigated. Surfactant-modified CNCs were then employed as emulsifying agents to determine the effects of stabilizing oil-water interface with CNCs after surfactant addition. Emulsion stability was substantially enhanced with the introduction of surfactants. Based on the chemistry of cationic surfactants, and the extent CNC surface hydrophobicity increases after surfactant binding, either oil-in-water or water-in-oil emulsions were successfully produced. This in situ surfactant adsorption method thus offers a simple way of modifying surface hydrophobicity of CNCs and allows fine tuning of CNC-based emulsion properties. Adsorbing polymers were used together with CNCs to prepare stable emulsions. The introduction of polymers facilitated the production of emulsion droplets with enhanced stability and smaller diameters. Both polymer-coated CNCs and the extra polymers partitioned at the interface and worked as the emulsifiers in a synergistic manner, leading to a reduction in CNC coverage on the emulsion droplet surfaces. Furthermore, reversible thermogelation of the emulsion was obtained when thermosensitive polymers were added. No noticeable emulsion coalescence occurred after multiple cycles of heating and cooling treatments of the emulsion gels. Freeze-drying and air-drying of these emulsion gels produced oil powders containing oil content as high as 94 wt. %. Finally, highly stable wet foams were successfully produced using CNCs and the water-soluble polymer, methyl cellulose. The effect of CNC and methyl cellulose concentration on the stability of air-water interfaces was elucidated. Both foamability and foam stability were greatly improved by adding CNCs to methyl cellulose solutions. The CNC particles helped to retain fluid in the films and plateau borders between bubbles, increasing bulk viscosity, and impeding water drainage. We also demonstrated that adding various monomers to CNCs- methyl cellulose wet foams did not lead to noticeable foam breaking. The successful production of macroporous structures with tailored chemistry and properties was achieved by subsequent polymerization of the monomers added to the foam. / Thesis / Doctor of Philosophy (PhD)
24

Tailoring Cellulose Nanocrystal, Polymer and Surfactant Interactions for Gels, Emulsions, and Foams

Hu, Zhen 06 1900 (has links)
This thesis describes the investigation of the properties of cellulose nanocrystals (CNCs) in water and at interfaces in the presence of different water-soluble polymers and surfactants. The potential of producing hydrogels, emulsions, and foams using both CNCs and surfactants and polymers is extensively explored herein. Interactions between CNCs and polymers were studied by measuring adsorption of polymers on CNC-coated surface in quartz crystal microbalance with dissipation monitoring (QCM-D) and surface plasmon resonance (SPR) instruments. Hydroxyethyl cellulose, hydroxypropyl guar, and locust bean gum adsorbed onto CNC-coated surfaces, whereas dextran did not adsorb. Gelation of CNC dilute dispersions was found for the samples added with adsorbing polymers, whereas the introduction of non-adsorbing polymers showed no such change of rheological behaviors of CNC dilute dispersions. The further addition of negative surfactant SDS or non-ionic surfactant Triton X-100 disrupted the gels whereas cationic surfactant CTAB did not. These behaviors illustrate the complexities associated with including CNC dispersions in formulated water-based products where polymers and surfactants are commonly used as well. The adsorption of cationic surfactants on CNC particle surfaces and the associated change of CNC hydrophobicity were investigated. Surfactant-modified CNCs were then employed as emulsifying agents to determine the effects of stabilizing oil-water interface with CNCs after surfactant addition. Emulsion stability was substantially enhanced with the introduction of surfactants. Based on the chemistry of cationic surfactants, and the extent CNC surface hydrophobicity increases after surfactant binding, either oil-in-water or water-in-oil emulsions were successfully produced. This in situ surfactant adsorption method thus offers a simple way of modifying surface hydrophobicity of CNCs and allows fine tuning of CNC-based emulsion properties. Adsorbing polymers were used together with CNCs to prepare stable emulsions. The introduction of polymers facilitated the production of emulsion droplets with enhanced stability and smaller diameters. Both polymer-coated CNCs and the extra polymers partitioned at the interface and worked as the emulsifiers in a synergistic manner, leading to a reduction in CNC coverage on the emulsion droplet surfaces. Furthermore, reversible thermogelation of the emulsion was obtained when thermosensitive polymers were added. No noticeable emulsion coalescence occurred after multiple cycles of heating and cooling treatments of the emulsion gels. Freeze-drying and air-drying of these emulsion gels produced oil powders containing oil content as high as 94 wt. %. Finally, highly stable wet foams were successfully produced using CNCs and the water-soluble polymer, methyl cellulose. The effect of CNC and methyl cellulose concentration on the stability of air-water interfaces was elucidated. Both foamability and foam stability were greatly improved by adding CNCs to methyl cellulose solutions. The CNC particles helped to retain fluid in the films and plateau borders between bubbles, increasing bulk viscosity, and impeding water drainage. We also demonstrated that adding various monomers to CNCs- methyl cellulose wet foams did not lead to noticeable foam breaking. The successful production of macroporous structures with tailored chemistry and properties was achieved by subsequent polymerization of the monomers added to the foam. / Thesis / Doctor of Philosophy (PhD)
25

Developement Of Aluminium Foam : An Experimental And Numerical Study

Jha, Kaushal 01 1900 (has links)
Metal foams are lightweight structures and have large use in many components acting as impact energy absorbers. They have exceptional mechanical, thermal and acoustic properties. The design or selection of foam for packaging is done on the basis of impact loads to be sustained or energy to be absorbed. For transportation of nuclear material, metal foams can be used as a packaging material. It may be noted that apart from other qualification requirements, a package containing nuclear material, has to be certified for drop test. Foam can serve the purpose by providing proper cushioning. Metal foams are still under development and need to be accurately characterized in terms of their mechanical properties as well as cell morphology. The aim of this work is to develop, characterize and model foam using experiments and analysis. Aluminum foam has been developed by powder metallurgy technique and the effect of addition of varying amounts of Mg and Alumina on the strength and energy absorption has been studied. Foams of varying densities have also been developed. The reason for going for higher density is to obtain higher plateau stress. If a package is designed with lower density foam, it may become very bulky and even impractical. The characterization part of the work includes study of porosity distribution, cell wall structure, microscopy, SEM images, etc. Mechanical testing (uniaxial compression) was performed on foam samples to get load deflection curve of foams. Area under a given curve i.e. energy absorbed per unit volume has been compared for various compositions and densities. The analysis part of the work presents effect of specimen size on bulk properties of foam. 2D honeycomb and 3D cases have been discussed. To model the porosities, spherical cavities have been assumed. Uniaxial compression cases with different combinations of porosities have been analyzed. The properties like Young’s modulus, plateau stress, Poisson’s ratio, tangent modulus, etc. have been evaluated. The effect of variation in yield strength and tangent modulus of base material on foam has been studied. It appears that if the model is based on uniform porosity distribution, it may lead to lower bound values of physical properties and give conservative result. Although some of these trends have been observed in published literature, the current numerical study has generated additional information and insight.
26

Theory of viscoelastic response in bilayer systems

Lu, Chun-Yi David January 1995 (has links)
No description available.
27

Mousses rigides et élastiques à base de tannins et d'albumine : préparation, caractérisation et modification / Rigid and elastic tannin and albumin foams : Preparation, characterization and modification

Li, Xinjun 12 June 2013 (has links)
Du fait de leur faible coût, de leur bonne résistance à la compression, de leur fort pouvoir isolant et de leur résistance au feu, les mousses tannin/furanique constituent une alternative très intéressante aux mousses phénoliques et aux polyuréthanes dans diverses applications. Par ailleurs elles sont constituées à 95 % de matériaux naturels. Cependant, les mousses tannin/furanique sont : a) moins résistantes mécaniquement que les mousses synthétiques telles que phénoliques et polyuréthanes; b) potentiellement toxiques si le formaldéhyde utilisé pour les formuler est libéré dans l'environnement ; c) par ailleurs, des mousses légèrement élastiques seraient un plus. Dans cette thèse, des modifications et les caractérisations associées des mousses tannin/furaniques sont apportées pour résoudre ces défauts. Ce travail a été réalisé en quatre étapes principales :1) Étude et compréhension de la relation structure - propriétés des mousses. Dans ce but, les agents gonflants tels que le diéthyléther, le pentane, et des isocyanates et des polyuréthanes ont été particulièrement étudiés.2) Du noir de carbone, des nanotubes de carbone, de l'argile micronisé, des oligomères d'un polymère hyperramifié (ester-amine), des isocyanates et des polyuréthanes ont été ajoutés dans les formulations des mousses pour tenter d'améliorer leurs propriétés mécaniques et modifier leurs structures cellulaires.3) Le glutaraldéhyde et le glyoxal ont été essayés pour remplacer le formaldéhyde et préparer ainsi des mousses exemptes de formaldéhyde.4) Une nouvelle mousse, la mousse d'albumine, a été préparée, caractérisée et optimisée / The solid foams, because of their low density and cell structure, are commercial products with more and more interest. In recent decades, various methods for making foams based on bio-based materials have been prepared and characterized, such as lignin, starch and tannins. Because of their low cost, their resistance to compression, their high insulation and resistance to fire, tannin/furanic foams are supposed to be alternatives of phenolic foams and polyurethane in various applications. However, tannin/furanic foams are: a) lower mechanical resistant than synthetic foams such as polyurethane and phenolic foams b) potentially toxic because of formaldehyde, c) it is also interesting to prepare a foam more elastic. In this thesis, These works were carried out by four main steps: 1) Study and understanding the relationship of structure and properties of the foams. So different blowing agents, such as diethyl ether, pentane, and isocyanates and polyurethanes, were studied. 2) Carbon black, carbon nanotubes, nano clay, oligomers of hyperbranched poly (ester-amine) and pMDI were added to the formulations to improve their mechanical properties and change their cellular structures. 3) Glyoxal and glutaraldehyde have been tried to replace and prepare formaldehyde-free formaldehyde foams. 4) A new foam, albumin foam was prepared, characterized and optimized
28

Behavior of the expanded polystyrene(EPS)geofoam on soft soil

Zou, Yong, University of Western Sydney, College of Science, Technology and Environment, School of Engineering and Industrial Design January 2001 (has links)
Excessive settlement and foundation instability are some of the main problems commonly encountered in fills and embankment structures built on a soft soil of low bearing capacity.The Expanded Polystyrene(EPS)replacement method, by partially or fully replacing the conventional fill material with extremely lightweight EPS geofoam, may solve these problems. In this thesis, experimental and theoretical work have been carried out to investigate the behaviour of EPS under various loading conditions in geotechnical applications and the effectiveness of EPS replacement technique has been studied using numerical models.Several tests were performed for this study and the results of these tests are given / Doctor of Philosophy (PhD)
29

Study of Cell Nucleation in Nano Ploymer Foams: An SCFT Approach

Kim, Yeongyoon January 2012 (has links)
This thesis is about "nano-cellular" polymer foams, i.e., to understand nano-bubble nucleation and growth mechanisms, we used Self-Consistent Field Theory(SCFT) for the research.\\ Classical Nucleation Theory (CNT) is often used to calculate nucleation rates, but CNT has assumptions which break down for a nano-sized bubble: it assumes planar sharp interfaces and bulk phases inside bubbles. Therefore, since the size of a nano-sized bubble is comparable to the size of the polymer molecule, we assumed that a bubble surface is a curved surface, and we ivestigated effects of curvature on the nucleation barrier. SCFT results show that sharper curvatures of smaller s cause a higher polymer configurational entropy and lower internal energy, and also the collapse of the bulk phase for smaller bubbles causes low internal energy. Consequently, the homogenous bubble nucleation barrier for curved surfaces is much smaller than flat surface (CNT prediction).\\ We calculated direct predictions for maximum possible cell densities as a function of bubble radius without calculation of nucleation barrier or nucleation rates in CNT. Our results show higher cell densities at higher solvent densities and lower temperatures. Moreover, our cell density prediction reveals that rather than surface tension, the volume free energy, often labelled as a pressure difference in CNT, is the dominant factor for both cell densities and cell sizes. This is not predicted by CNT.\\ We also calculated direct predictions for the maximum possible cell densities as a function of system volume in compressible systems. With an assumption that system pressure has an optimal pressure which gives the maximal density of good quality foams (bulk phase inside bubble), we calculated the inhomogeneous system pressure, the homogeneous system, and cell density as a function of system volume.\\ Maximal cell prediction in compressible system shows the incompressible system prediction is the upperbound maximal cell density, and qualitatively consistent with the compressible system results - higher cell densities at low temperatures and high solvent densities.\\ In addition, our results show a bigger expansion as well as a high cell density at low temperature and high solvent density, but temperature is a more dominant factor than the solvent density. From our results, we assume that a quick pressure dropping is required to get a better quality foam of a higher cell density.
30

Nanoparticle-stabilized supercritical CO₂ foams for potential mobility control applications

Espinosa, David Ryan 20 July 2011 (has links)
The petroleum industry has been utilizing surfactant stabilized foams for mobility control and enhanced oil recovery applications. However, if surface-treated nanoparticles were utilized instead of surfactants, the foams could have a number of important advantages. The solid-stabilized foams are known to have a much better stability than the surfactant-stabilized foams, because the energy required to bring nanoparticles to, and detach from the foam bubble surface is much larger than that of surfactants, and thus the resulting foam will be more stable. Since nanoparticles are the stabilizing component of the foam and are solid, they have potential to stabilize foam at high temperature conditions for extended periods of time. Since they are inherently small, nanoparticles, as well as the foam that they stabilize, can be transported through rocks without causing plugging in pore throats. Stable supercritical carbon dioxide-in-water foams were created using 5 nm silica-core nanoparticles whose surface had short polyethylene-glycol chains covalently bonded to it. The foams were made by injecting CO2 and an dispersion of with surface-treated nanoparticles simultaneously through a glass-bead pack. The fluids flowing through this permeable media created shear rates of about 1350 sec-1. Nanoparticle concentration, nanoparticle coating, water salinity, volume ratios between CO2 and water, temperature and shear rates were systematically varied in order to define the range of conditions for foam generation. Using de-ionized water to dilute the nanoparticle concentration, we were able to generate stable foams were at nanoparticle concentrations as low as 0.05 weight percent. Among the different surface coatings that we tested PEG coatings were the only type that was able to stabilize foam. As the salinity of the aqueous phase increased, the nanoparticle concentration required to maintain foam also increased; for example, 0.5 weight percent nanoparticles were required for 4 weight percent NaCl brine. Foam stability was weakly correlated with volume ratios as foams were made across ratios from two to fourteen, and the normalized viscosity ratio increased with the increase of the phase ratio. Foams were created at temperatures up to 95 degrees Celsius. Foam generation was also determined to require a critical shear rate, which increased with temperature. When foam was stabilized by the nanoparticles, the foam exhibited an increase of between two and twenty times in the resistance of flow compared to the two fluids flowing without nanoparticles. / text

Page generated in 0.0178 seconds