• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 6
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 101
  • 101
  • 101
  • 28
  • 27
  • 24
  • 18
  • 15
  • 15
  • 14
  • 14
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Superconductivity in Sr2RuO4 micro-rings / Sr2RuO4微小リングにおける超伝導性

Yasui, Yuuki 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第21555号 / 理博第4462号 / 新制||理||1640(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 前野 悦輝, 教授 石田 憲二, 教授 寺嶋 孝仁 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
32

Elektrotransportní vlastnosti nanostruktur připravených metodou FIB / Electrotransport properties of the nanostructures fabricated by the FIB

Ostřížek, Petr January 2011 (has links)
The aim of this work is fabrication of nanostructures and measurement of their electrotransport properties. There are two different methods used for fabrication - electron beam lithography with sputtering of thin films and focused ion beam with deposition from gas phase. I-V characteristic was measured for characterisation of as prepared nanostructures - wires. Material of wires prepared by using of electron beam lithography was permalloy - an alloy of iron and nickel. Second types of wires prepared by using of chemical vapor deposition induced by focused ion beam was platinum based.
33

Investigation of acoustic waves generated in an elastic solid by a pulsed ion beam and their application in a FIB based scanning ion acoustic microscope

Akhmadaliev, Chavkat January 2004 (has links)
The rapid growth of the microelectronics industry in the last decades made it possible to produce structures in the sub-micrometer scale on silicon chips and to reach an integration scale under 100 nm. Decreasing the size and increasing the complexity of these structures make a control of quality and defects investigation more difficult. During a long time ultrasound devices are being used for nondestructive investigation of materials, like ultrasound microscopes, scanning photo-acoustic microscopes or scanning electron-acoustic microscopes, where acoustic waves are generated by acoustic transducers, focused laser or electron beams, respectively. The aim of this work is to investigate more precisely the acoustic wave generation by pulsed and periodically modulated ion beams in different solid materials depending on the beam parameters and to demonstrate the possibility to apply an intensity modulated focused ion beam (FIB) for acoustic emission and for nondestructive investigation of the internal structure of materials on a microscopic scale. The combination of a FIB and an ultrasound microscope in one device can provide the opportunity of nondestructive investigation, production and modification of micro- and nanostructures simultaneously. The FIB spot size in modern systems is comparable with that of a focused electron beam and the penetration depth of ions with energy of 20-60 keV is lower than 100 nm. This makes it possible to reach a sub-micrometer resolution of a scanning ion acoustic microscope. On the other hand side a FIB with energy of 20-60 keV is a good tool which can be used for the fabrication of nanostructures using ion milling, implantation or ion beam assisted deposition techniques. The bulk ultrasound emission in a solid was investigated using a pulsed high energy ion beam focused on aluminum, copper, iron and silicon samples. Oxygen, silicon and gold ion beams were applied in charge states from 1+ to 4+ with the pulse duration of 0.5 - 4 µs and an energy of 1.5 - 10 MeV. Intensity of the detected acoustic waves shows a linear dependence on the energy of the incident ions, on the ion flux as well as on the pulse duration. No influence of the ion charge and ion mass to the emission of acoustic waves was observed. The ion acoustic effect was applied for a nondestructive material inspection using intensity modulated FIB providing by the IMSA-100 FIB system with an accelerating potential of 30-35 kV. The achieved lateral resolution of this scanning ion acoustic microscope is in the micrometer range depending on the sample material and the beam modulation frequency. The resolution can be improved by increasing the frequency. The maximal modulation frequency which was obtained at IMSA-100 is about 2 MHz corresponding to lateral resolution of 4-5 µm on silicon. Using this microscope, some images of integrated microstructures on a silicon chip were obtained using the lock-in technique for filtering of the signal from the noise and increasing of the total imaging time. The possibility to visualize near sub-surface structure was demonstrated. Due to the strong sputtering effect and the long time of irradiation the imaged structures were significantly damaged. Si2+, Ge2+, Ga+ and Au+ ions were used. All these ions are quite heavy and have high sputtering coefficients. Long-time imaging improves the quality of acoustic images, i. e. the signal-to-noise ratio is reduced with the square root from the pixel time, but leads to significant erosion of the imaged structure.
34

Area-selective electroless deposition of gold nanostructures on silicon / シリコン表面での局所選択的無電解金ナノ構造成長

Itasaka, Hiroki 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19724号 / 工博第4179号 / 新制||工||1644(附属図書館) / 32760 / 京都大学大学院工学研究科材料化学専攻 / (主査)教授 平尾 一之, 教授 三浦 清貴, 教授 田中 勝久 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
35

Characterization of Catalyst Coated Membranes using Electron and X-ray Microscopy

Guimarães de Azeredo Melo, Lis 11 1900 (has links)
Proton-Exchange Membrane Fuel Cells are an alternative source of electricity generation for automobiles and stationary power plants. With increasing concerns on environmental issues, recent research has focused on maximizing the efficiency and durability as well as minimizing the costs of fuel cells. One of the main areas of research is optimizing the structure of the cathode catalyst layer. The main driving force of this thesis was the effective visualization of nanostructure of the ionomer, which is responsible for proton conduction in the cathode catalyst layer. However, challenges regarding sample preparation and radiation damage still need to be well understood. Different sample preparation techniques of catalyst inks and catalyst coated membranes were used for Scanning and Transmission Electron Microscopy, such as freeze fracturing, ultramicrotomy and Focused Ion Beam. Comparisons of the microstructure and chemical differences of all components, especially the ionomer, prepared by ultramicrotomy and Focused Ion Beam, was done with Transmission Electron Microscopy and Scanning Transmission X-ray Microscopy applied to the same catalyst coated membrane sample. Detailed spectroscopic information regarding components in both specimens was compared with C 1s and F 1s near edge X-ray absorption spectra recorded in a Scanning Transmission X-ray Microscope. Focused Ion Beam causes extensive damage to the carbon support and ionomer but prepares thinner sections than ultramicrotomy. This work makes it possible to understand the limitations of each sample preparation and compositional analysis technique in order to later apply one of them to image the ionomer in the catalyst layer at the nanoscale, hopefully using tomography techniques. / Thesis / Master of Materials Science and Engineering (MMatSE)
36

Electron Microscopy Characterization of Vanadium Dioxide Thin Films and Nanoparticles

Rivera, Felipe 01 March 2012 (has links) (PDF)
Vanadium dioxide (VO_2) is a material of particular interest due to its exhibited metal to insulator phase transition at 68°C that is accompanied by an abrupt and significant change in its electronic and optical properties. Since this material can exhibit a reversible drop in resistivity of up to five orders of magnitude and a reversible drop in infrared optical transmission of up to 80%, this material holds promise in several technological applications. Solid phase crystallization of VO_2 thin films was obtained by a post-deposition annealing process of a VO_{x,x approx 2} amorphous film sputtered on an amorphous silicon dioxide (SiO_2) layer. Scanning electron microscopy (SEM) and electron-backscattered diffraction (EBSD) were utilized to study the morphology of the solid phase crystallization that resulted from this post-deposition annealing process. The annealing parameters ranged in temperature from 300°C up to 1000°C and in time from 5 minutes up to 12 hours. Depending on the annealing parameters, EBSD showed that this process yielded polycrystalline vanadium dioxide thin films, semi-continuous thin films, and films of isolated single-crystal particles. In addition to these films on SiO_2, other VO_2 thin films were deposited onto a-, c-, and r-cuts of sapphire and on TiO_2(001) heated single-crystal substrates by pulsed-laser deposition (PLD). The temperature of the substrates was kept at ~500°C during deposition. EBSD maps and orientation imaging microscopy were used to study the epitaxy and orientation of the VO_2 grains deposited on the single crystal substrates, as well as on the amorphous SiO_2 layer. The EBSD/OIM results showed that: 1) For all the sapphire substrates analyzed, there is a predominant family of crystallographic relationships wherein the rutile VO_2{001} planes tend to lie parallel to the sapphire's {10-10} and the rutile VO_2{100} planes lie parallel to the sapphire's {1-210} and {0001}. Furthermore, while this family of relationships accounts for the majority of the VO_2 grains observed, due to the sapphire substrate's geometry there were variations within these rules that changed the orientation of VO_2 grains with respect to the substrate's normal direction. 2) For the TiO_2, a substrate with a lower lattice mismatch, we observe the expected relationship where the rutile VO_2 [100], [110], and [001] crystal directions lie parallel to the TiO_2 substrate's [100], [110], and [001] crystal directions respectively. 3) For the amorphous SiO_2 layer, all VO_2 crystals that were measurable (those that grew to the thickness of the deposited film) had a preferred orientation with the the rutile VO_2[001] crystal direction tending to lie parallel to the plane of the specimen. The use of transmission electron microscopy (TEM) is presented as a tool for further characterization studies of this material and its applications. In this work TEM diffraction patterns taken from cross-sections of particles of the a- and r-cut sapphire substrates not only solidified the predominant family mentioned, but also helped lift the ambiguity present in the rutile VO_2{100} axes. Finally, a focused-ion beam technique for preparation of cross-sectional TEM samples of metallic thin films deposited on polymer substrates is demonstrated.
37

Individual Carbon Nanotube Probes And Field Emitters Fabrication And T

Chai, Guangyu 01 January 2004 (has links)
Since the discovery of carbon nanotubes (CNT) in 1999, they have attracted much attention due to their unique mechanical and electrical properties and potential applications. Yet their nanosize makes the study of individual CNTs easier said than done. In our laboratory, carbon fibers with nanotube cores have been synthesized with conventional chemical vapor deposition (CVD) method. The single multiwall carbon nanotube (MWNT) sticks out as a tip of the carbon fiber. In order to pick up the individual CNT tips, focused ion beam (FIB) technique is applied to cut and adhere the samples. The carbon fiber with nanotube tip was first adhered on a micro-manipulator with the FIB welding function. Afterwards, by applying the FIB milling function, the fiber was cut from the base. This enables us to handle the individual CNT tips conveniently. By the same method, we can attach the nanotube tip on any geometry of solid samples such as conventional atomic force microscopy (AFM) silicon tips. The procedures developed for the FIB assisted individual CNT tip fabrication will be described in detail. Because of their excellent electrical and stable chemical properties, individual CNTs are potential candidates as electron guns for electron based microscopes to produce highly coherent electron beams. Due to the flexibility of the FIB fabrication, the individual CNT tips can be easily fabricated on a sharpened clean tungsten wire for field emission (FE) experimentation. Another promising application for individual CNT tips is as AFM probes. The high aspect ratio and mechanical resilience make individual CNTs ideal for scanning probe microscopy (SPM) tips. Atomic force microscopy with nanotube tips allows us to image relatively deep features of the sample surface at near nanometer resolution. Characterization of AFM with individual CNT tips and field emission properties of single CNT emitters will be studied and presented.
38

Chemical Mechanisms and Microstructural Modification of Alloy Surface Activation for Low-Temperature Carburization

Illing, Cyprian A W 01 June 2018 (has links)
No description available.
39

Development of an automated characterization-representation framework for the modeling of polycrystalline materials in 3D

Groeber, Michael Anthony 30 August 2007 (has links)
No description available.
40

Electron and Ion Beam Imaging of Human Bone Structure Across the Nano- and Mesoscale

Binkley, Dakota M. January 2019 (has links)
Human bone tissue has an inherent hierarchical structure, which is integral to its material properties. It is primarily composed of a collagen fiber matrix that is mineralized with hydroxyapatite. A comprehensive understanding of bone and the linkages between structural and cellular organization is imperative to developing fundamental knowledge that can be applied to better our understanding of bone disease manifestations and its interaction with implant devices. Herein, this thesis investigated non-traditional methods for evaluating bone structure across the nano- and meso-length scales. Firstly, due to the inhomogeneous organization of collagen fibrils and mineral platelets of bone ultrastructure, a suitable methodology for the investigation of both phases needed to be generated. In this work, focused ion beam (FIB) microscopy was employed to create site-specific scanning transmission electron microscopy (STEM) lift-outs of human osteonal bone that could be visualized with correlatively with STEM and small angle X-ray scattering (SAXS). Samples were successfully characterized using both techniques, and minimal visual damage was induced during data acquisition. This work is the first to demonstrate the potential for bone to be investigated correlatively using both STEM and SAXS. Secondly, this work is the first to employ a dual-beam plasma FIB (PFIB) equipped with a scanning electron microscope (SEM), to investigate bone tissue across the mesoscale. This equipment enables large volume three-dimensional (3D) imaging at nanoscale resolution across larger mesoscale volumes. This thesis aimed to reduce ion beam-based artifacts, which presents as curtain-like features by adjusting the composition of protective capping layers. Subsequently, large volume tomograms of bone tissue were acquired, demonstrating the effectiveness of the PFIB to reveal mesoscale features including the cellular network of bone tissue. Overall, this thesis has developed methods that allow for the application of advanced microscopy techniques to enhance the understanding of bone tissue across the nanoscale and mesoscale. / Thesis / Master of Applied Science (MASc) / Bone tissue has a unique structure that perplexes both biologists and materials scientists. The hierarchical structure of bone has garnered the interest of materials scientists since the body’s skeletal strength and toughness are governed by the nanoscale (millionth of centimetres) to macroscale (centimeters) organization of bone. In this work, the intricate organization of bone is investigated using advanced electron and ion beam microscopy techniques, which achieve high-resolution imaging of bone structure. Firstly, this work developed a sample preparation workflow to correlate electron and X-ray imaging of the same bone tissue. Secondly, this work was the first to apply serial-sectioning plasma focused ion beam tomography to human bone tissue to investigate its structure at high resolution across micron-sized volumes. Here, previously unexplored methodologies to image bone are demonstrated with the hopes of applying such techniques to investigate healthy and pathological bone tissue in the future.

Page generated in 0.0619 seconds