• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Régularisations de faible complexité pour les problèmes inverses / Low Complexity Regularization of Inverse Problems

Vaiter, Samuel 10 July 2014 (has links)
Cette thèse se consacre aux garanties de reconstruction et de l’analyse de sensibilité de régularisation variationnelle pour des problèmes inverses linéaires bruités. Il s’agit d’un problème d’optimisation convexe combinant un terme d’attache aux données et un terme de régularisation promouvant des solutions vivant dans un espace dit de faible complexité. Notre approche, basée sur la notion de fonctions partiellement lisses, permet l’étude d’une grande variété de régularisations comme par exemple la parcimonie de type analyse ou structurée, l’anti-Parcimonie et la structure de faible rang. Nous analysons tout d’abord la robustesse au bruit, à la fois en termes de distance entre les solutions et l’objet original, ainsi que la stabilité de l’espace modèle promu.Ensuite, nous étudions la stabilité de ces problèmes d’optimisation à des perturbations des observations. A partir d’observations aléatoires, nous construisons un estimateur non biaisé du risque afin d’obtenir un schéma de sélection de paramètre. / This thesis is concerned with recovery guarantees and sensitivity analysis of variational regularization for noisy linear inverse problems. This is cast as aconvex optimization problem by combining a data fidelity and a regularizing functional promoting solutions conforming to some notion of low complexity related to their non-Smoothness points. Our approach, based on partial smoothness, handles a variety of regularizers including analysis/structured sparsity, antisparsity and low-Rank structure. We first give an analysis of thenoise robustness guarantees, both in terms of the distance of the recovered solutions to the original object, as well as the stability of the promoted modelspace. We then turn to sensivity analysis of these optimization problems to observation perturbations. With random observations, we build un biased estimator of the risk which provides a parameter selection scheme.
2

Régularisations de Faible Complexité pour les Problèmes Inverses

Vaiter, Samuel 10 July 2014 (has links) (PDF)
Cette thèse se consacre aux garanties de reconstruction et de l'analyse de sensibilité de régularisation variationnelle pour des problèmes inverses linéaires bruités. Il s'agit d'un problème d'optimisation convexe combinant un terme d'attache aux données et un terme de régularisation promouvant des solutions vivant dans un espace dit de faible complexité. Notre approche, basée sur la notion de fonctions partiellement lisses, permet l'étude d'une grande variété de régularisations comme par exemple la parcimonie de type analyse ou structurée, l'antiparcimonie et la structure de faible rang. Nous analysons tout d'abord la robustesse au bruit, à la fois en termes de distance entre les solutions et l'objet original, ainsi que la stabilité de l'espace modèle promu. Ensuite, nous étudions la stabilité de ces problèmes d'optimisation à des perturbations des observations. À partir d'observations aléatoires, nous construisons un estimateur non biaisé du risque afin d'obtenir un schéma de sélection de paramètre.

Page generated in 0.1479 seconds