• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fonctions holonomes en calcul formel

Chyzak, Frédéric 27 May 1998 (has links) (PDF)
Cette thèse montre comment le calcul formel permet la manipulation d'une grande classe de suites et fonctions solutions d'opérateurs linéaires, la classe des fonctions holonomes. Celle-ci contient de nombreuses fonctions spéciales, en une ou plusieurs variables, et de nom- breuses suites de la combinatoire. Un cadre théorique est tout d'abord introduit pour algorith- miser les propriétés de clôture de la classe holonome, pour y permettre un test à zéro et pour unifier les calculs différentiels sur les fonctions et les calculs de récurrences sur les suites. Ces méthodes s'appuient sur des calculs par une extension de la théorie des bases de Gröbner dans un cadre de polynômes non commutatifs, les polynômes de Ore. Deux types d'algorithmes de sommation et d'intégration symboliques définies et indéfinies sont ensuite développés, dont la justification théorique fait appel à la théorie des D-modules holonomes. Les premiers ont recours à une élimination polynomiale non commutative par bases de Gröbner ; les seconds à des algo- rithmes de résolution de systèmes fonctionnels linéaires en leurs solutions fractions rationnelles. Bien plus que la recherche de formes closes, l'objectif est de pouvoir continuer à calculer avec la représentation implicite des objets holonomes même en l'absence de formes explicites. Ce type de calculs permet en particulier la preuve automatique d'identités sommatoires et intégrales. Une implantation de ces algorithmes dans le système de calcul formel Maple a permis de donner la première preuve automatique d'identités jusqu'à présent inaccessibles par le calcul formel.
2

Opérations de proximité en orbite : évaluation du risque de collision et calcul de manoeuvres optimales pour l'évitement et le rendez-vous / Orbital proximity operations : evaluation of collision risk and computation of optimal maneuvers for avoidance and rendezvous

Serra, Romain 10 December 2015 (has links)
Cette thèse traite de l'évitement de collision entre un engin spatial opérationnel, appelé objet primaire, et un débris orbital, dit secondaire. Ces travaux concernent aussi bien la question de l'estimation du risque pour une paire d'objets sphériques que celle du calcul d'un plan de manoeuvres d'évitement pour le primaire. Pour ce qui est du premier point, sous certaines hypothèses, la probabilité de collision s'exprime comme l'intégrale d'une fonction gaussienne sur une boule euclidienne, en dimension deux ou trois. On en propose ici une nouvelle méthode de calcul, basée sur les théories de la transformée de Laplace et des fonctions holonomes. En ce qui concerne le calcul de manoeuvres de propulsion, différentes méthodes sont développées en fonction du modèle considéré. En toute généralité, le problème peut être formulé dans le cadre de l'optimisation sous contrainte probabiliste et s'avère difficile à résoudre. Dans le cas d'un mouvement considéré comme relatif rectiligne, l'approche par scénarios se prête bien au problème et permet d'obtenir des solutions admissibles. Concernant les rapprochements lents, une linéarisation de la dynamique des objets et un recouvrement polyédral de l'objet combiné sont à la base de la construction d'un problème de substitution. Deux approches sont proposées pour sa résolution : une première directe et une seconde par sélection du risque. Enfin, la question du calcul de manoeuvres de proximité en consommation optimale et temps fixé, sans contrainte d'évitement, est abordée. Par l'intermédiaire de la théorie du vecteur efficacité, la solution analytique est obtenue pour la partie hors-plan de la dynamique képlérienne linéarisée. / This thesis is about collision avoidance for a pair of spherical orbiting objects. The primary object - the operational satellite - is active in the sense that it can use its thrusters to change its trajectory, while the secondary object is a space debris that cannot be controlled in any way. Onground radars or other means allow to foresee a conjunction involving an operational space craft,leading in the production of a collision alert. The latter contains statistical data on the position and velocity of the two objects, enabling for the construction of a probabilistic collision model.The work is divided in two parts : the computation of collision probabilities and the design of maneuvers to lower the collision risk. In the first part, two kinds of probabilities - that can be written as integrals of a Gaussian distribution over an Euclidean ball in 2 and 3 dimensions -are expanded in convergent power series with positive terms. It is done using the theories of Laplace transform and Definite functions. In the second part, the question of collision avoidance is formulated as a chance-constrained optimization problem. Depending on the collision model, namely short or long-term encounters, it is respectively tackled via the scenario approach or relaxed using polyhedral collision sets. For the latter, two methods are proposed. The first one directly tackles the joint chance constraints while the second uses another relaxation called risk selection to obtain a mixed-integer program. Additionaly, the solution to the problem of fixed-time fuel minimizing out-of-plane proximity maneuvers is derived. This optimal control problem is solved via the primer vector theory.

Page generated in 0.0664 seconds