Spelling suggestions: "subject:"fonctions méromorphe"" "subject:"fonctions hydromorphes""
1 |
La méthode de renormalisation de Zalcman et ses applicationsYounsi, Malik 17 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2010-2011 / Un principe heuristique généralement attribué au mathématicien français A. Bloch stipule qu'une famille de fonctions holomorphes ayant une propriété en commun dans un certain domaine aura tendance à être normale s'il n'existe pas de fonction entière non constante ayant cette même propriété. Bien qu'il existe des contre-exemples à ce principe heuristique, celui-ci demeure néanmoins vrai dans plusieurs cas intéressants. Récemment, L. Zalcman [26] a introduit une technique permettant de rendre le principe de Bloch rigoureux : il s'agit d'une méthode de renormalisation qui décrit le type de propriété nécessaire pour qu'une famille de fonctions méromorphes ayant cette propriété soit normale. Le présent travail a pour but d'étudier la méthode de renormalisation de Zalcman et ses applications en analyse complexe. On y donne une présentation détaillée des principaux résultats associés ainsi que plusieurs applications, concernant, notamment, la dynamique complexe et la théorie des séries lacunaires.
|
2 |
Mouvement de l'ensemble de Julia des polynômes en itération aléatoireFortier, Jérôme 17 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2010-2011 / L'ensemble de Julia d'une fonction rationnelle, issu de la théorie dite classique de l'itération, possède une généralisation à une théorie dite aléatoire, où les fonctions appliquées peuvent être différentes d'une itération à l'autre. En restreignant notre étude de l'itération aléatoire aux cas où les suites de fonctions considérées sont des suites dites bornées de polynômes, plusieurs phénomènes de la théorie classique se généralisent, et on se demande jusqu'à quel point c'est le cas. On étudie donc les liens entre les deux théories via la question suivante : comment est modifié l'ensemble de Julia lorsque les coefficients des fonctions qui l'engendrent sont modifiés? Un théorème classique décrit ainsi l'ensemble de Julia comme ressemblant à une multifonction méromorphe, et on tente de généraliser celui-ci. Il faut donc, d'abord, décrire les grandes lignes de la théorie l'itération et de celle des multifonctions méromorphes.
|
Page generated in 0.099 seconds