• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 122
  • Tagged with
  • 193
  • 193
  • 121
  • 119
  • 118
  • 117
  • 116
  • 116
  • 116
  • 116
  • 69
  • 69
  • 69
  • 66
  • 50
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Packaging sterilization : aseptic filling technology : a report presented in fulfillment of the requirements for the degree of Master of Technology in Food Technology at Massey University

Zhang, Yin January 2009 (has links)
Xenos Ltd. is a technology driven food company, that specializes in aseptic processing and packaging beverage products in bottles. Their aseptic filling technology is based on packaging sterilization with combined treatments of oxidizing agents and Ultraviolet radiation. Recent research studies have suggested that there is a synergistic effect of hydrogen peroxide (0.5 – 1 %) plus UV on inactivation of microorganisms including spores. Advantages of the combined treatment include rapid inactivation, minimum hydrogen peroxide residue in products, with the method being applicable to a wide range of packaging types. Based on this principle, a unique aseptic packaging technique has been developed by Xenos Ltd., which utilizes the combination of vaporized Perform (a commercial sterilizing agent manufactured by Orica Chemnet containing 25% hydrogen peroxide and 5% peracetic acid) and UV radiation at 7.5 – 12.5 W/m2. The aim of the project was to improve and validate the effectiveness of the packaging sterilization process through challenge tests. Challenge tests were conducted using Bacillus subtilis spores as the test microorganism to determine the log reductions delivered by the packaging sterilization system. The tests were firstly carried out on a pilot plant scale aseptic filling machine, in order to test the sterility of the small scale system, and investigate processing parameters (operational conditions) which could affect and improve sterility. The established operational conditions for achieving target sterility were used for designing and modifying an upgrade aseptic packaging system. Finally validation of the upgrade packaging sterilization system was conducted through challenge tests to prove sterility. It is highly recommended that in order to ensure sterility, the packaging sterilization system with vaporized Perform plus UV treatment must meet the requirements listed below during the sterilization process:  Hydrogen peroxide concentration of Perform condensate on bottles (after steaming) is best within 0.5 – 1 %;  Perform loading level should be minimum 300 mg/bottle after vaporized Perform treatment;  UV treatment time applied is greater than 2 seconds during UV treatment;  At least 20 seconds of penetration time (time between Perform treatment and UV treatment) should be allowed. The upgrade sterilization system used by Xenos Ltd. has been improved to meet the above operational conditions. With spore loading level of 106 per bottle and 105 per cap, the system is able to deliver at least a 6 log reduction of B. subtilis spores on PET or glass bottles and a 5 log reduction on bottle caps. Moruzzi et al. (2000) stated that at least a 4 log reduction is commercially required for an aseptic packaging process. Therefore, the system’s sterility would meet the commercial acceptable sterility.
82

Concentration of dairy flavours using pervaporation : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology at Massey University, Auckland, New Zealand

Overington, Amy Rachael January 2008 (has links)
The food industry could potentially benefit from using pervaporation, a membrane process, to concentrate flavours. This research aimed to investigate its application for concentrating flavours in dairy process streams. Pervaporation experiments were carried out at a range of operating conditions, using hydrophobic membranes. The feed mixtures were either aqueous model solutions of dairy flavour compounds (acids, esters and ketones), complex model mixtures containing flavour compounds plus non-volatile dairy components, or real dairy products. Flavour compound enrichment factors ranged from below one to above 30, with esters and ketones being concentrated more effectively than acids. Thus, the flavours could be partially fractionated based on their chemical structure. The permeation of acids was reduced by approximately 50% when the feed pH was increased to near their p Ka values. For flavour compounds with lower molecular weights than approximately 1 20 g mol- I , permeation was controlled mainly by sorption i n the membrane; for larger compounds it was controlled mainly by diffusion through the membrane. The mass transfer of each flavour compound increased with temperature, following an Arrhenius-like relationship. The activation energy was a function of each compound's heat of sorption, its molecular weight, and the elastic modulus of the membrane. The activation energy was also related to the Arrhenius preexponential factor. Thus, fluxes could be estimated through empirical correlations. The non-volatile feed composition was an important factor influencing the pervaporation performance. Milk protein isolate (4% w/v) or lactose (6% or 1 2% w/v) bound with the flavour compounds in the feed, thus lowering the enrichment of sorption-controlled compounds. Milk fat (up to 38% w/v, in the form of cream ) reduced the enrichment of all the flavour compounds tested. Esters and ketones became unavailable for pervaporation as they partitioned into the fat phase; acids remained mainly in the aqueous phase, but their permeation was reduced because the added cream increased the feed pH. Experiments with real dairy products showed that pervaporation could be used to concentrate diacetylin starter distillate, and to selectively recover short-chain esters from ester cream. Of these two products, starter distillate is the more promising for use as a pervaporation feed stream.
83

Comparison of two ultrafiltration membrane systems for whole milk feta cheese production : a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Food Technology at Massey University, Auckland, New Zealand

Chollangi, Anusha January 2009 (has links)
Cheese is one of the most well known food products in the world dating back to the 8th century B.C. There are more than 2000 varieties of cheese that are manufactured all over the world. Feta cheese is a soft white cheese with a salty and slightly acidic taste, which has originated from Greece. Most of the feta cheese manufactured in Greece is consumed locally, the migration of greeks to other parts of the world led to a demand for feta cheese outside of Greece. The spreading of the popularity of feta cheese to other ethnic groups in different parts of the world resulted in the high demand for feta cheese worldwide. The modern and most efficient method of feta cheese production involves a membrane filtration method, known as ultrafiltration. The ultrafiltration process utilises pressure as a driving force to concentrate milk by removal of water and small dissolved molecules. Hollow fibre and spiral wound ultrafiltration membranes are the two types of membranes that are commonly used for cheese production. An extensive amount of research exists on the implementation of ultrafiltration to improve the efficiency of the cheese making process and the performance of the membranes. However, limited research has been conducted on the comparison of the hollow fibre and spiral wound membrane performance in the cheese making process. The objective of the research was to determine if the hollow fibre membranes used at Puhoi Valley Cheese can be replaced with spiral wound membranes without compromising the quality of cheese produced. In order to achieve the objective, feta cheese was produced using hollow fibre and spiral wound ultrafiltration pilot plants. The operating performances of the hollow fibre and spiral wound membrane units were compared. To ensure that the quality of cheese is maintained, the cheese manufactured on the pilot plant units was analysed in terms of composition, microbiology, texture and sensory properties. The cheese made using the hollow fibre membrane pilot plant was compared with the reference sample from Puhoi Valley Cheese as they use hollow fibre membranes to produce feta cheese. The cheese made from the spiral wound membrane unit was also compared to that made by the hollow fibre membrane pilot plant unit. The operating parameters such as the inlet and outlet pressure, pressure difference along the membrane, transmembrane pressure, flow rate, recycle rate (bleed off rate), temperature and the run time were recorded. The operating parameters of the hollow fibre and spiral wound runs were compared with the data from Puhoi Valley Cheese. The quality of cheese made on the hollow fibre and spiral wound pilot plant units were evaluated in terms of composition, texture, microbiology and sensory properties. The composition was defined by the fat, protein, total solids and salt contents. The fat content was determined by utilising the modified Schmid-Bondzynski-Ratzlaff method, protein by the Kjeldahl method, total solids by using the air drying oven and salt percentage by the volhard method. The texture of the cheese was determined by the fracturability and hardness from the compression curve generated using the single bite compression test. The microbiological testing was performed according to New Zealand testing methods for E.Coli, Staphylococcus aureus, coliforms and yeast and mould. The difference from the control method was utilised for sensory evaluation. The acid degree value method was used to determine the lipase activity in feta cheese. It was found from the composition, texture and sensory analysis that the cheese from the hollow fibre pilot plant was different from the cheese manufactured at Puhoi Valley Cheeses (PVC). The spiral wound cheeses were also found to be different to PVC cheese, however the spiral wound cheeses and the pilot plant hollow fibre cheese were the same. The differences between both the pilot plant cheeses and PVC cheese were in terms of the fat, salt, moisture contents and the lipase activity in the cheeses. The fat content in the hollow fibre and spiral wound pilot plant cheeses are lower in comparison to the PVC cheese. This difference in fat content is considered to be due to the difference in the fat to protein ratio of the milk concentrated on the pilot plant and the PVC ultrafiltration system. The lower fat content resulted in firmer cheese than PVC due to more cross linking between the protein strands in cheese. The salt content in the cheeses made using the hollow fibre and spiral wound pilot plants was lower than Puhoi Valley Cheese. This is considered to be due to the low ratio of brine volume to cheese volume used for salting the cheese. The salt content of brine decreases during brining; hence a low ratio of brine volume to cheese volume causes a significant decrease in brine concentration. The decrease in brine concentration decreases the salt intake of the cheese. As salt diffuses in the moisture diffuses out, lower salt content results in higher moisture content in the cheese. As mentioned, the moisture content of the hollow fibre pilot plant cheese was higher than the PVC cheese. The moisture content is inversely proportional to the total solids, hence higher moisture in pilot plant cheeses implies lower total solids than the PVC cheese. The lipase activity results showed that the hollow fibre and spiral wound pilot plant cheeses had higher lipase activity than the Puhoi valley cheese. The differences in lipase activity of the pilot plant cheeses and Puhoi Valley cheese were considered to be due to the incomplete inactivation of lipase present in milk during pasteurisation. The results from texture and sensory evaluation support the above mentioned differences. The microbiology results for all pilot plant cheeses were within the trigger limits set by Puhoi valley cheeses. The results from monitoring the operating parameters of both the pilot plant data show that the permeate flux decreases while the total solids in milk increase with time, which was also observed from the Puhoi Valley Cheese data. However, the rate of decrease of the permeate flux and the increase of the total solids in milk are dependent on the membrane area, feed volume, transmembrane pressure, pressure drop across the membrane and the flow characteristics. The rate of decrease in permeate flux and the rate of increase in the total solids of the hollow fibre runs and spiral wound runs are slightly different. The difference is due to the availability of larger membrane surface area and processing of larger feed volume of milk in the spiral wound runs. The transmembrane pressure and the pressure drop across the membrane were maintained as close as possible to Puhoi Valley Cheese. In conclusion, spiral wound membranes can be used to achieve the desired total solids concentration and successfully make the same feta cheese as the hollow fibre pilot plant. In order to make the same quality of feta cheese as Puhoi Valley Cheese using the spiral wound membrane pilot plant, the same composition of milk used for concentration at Puhoi Valley Cheese needs to be used on the spiral wound pilot plant unit. It is recommended that Puhoi Valley Cheeses should be replaced with spiral wound membranes if they are more economical in terms of cost than the hollow fibre membranes.
84

Production of alginate beads : a project report [i.e. thesis] presented in partial fulfillment of the requirements for the degree of Master in Food Technology at Massey University, Auckland, New Zealand. EMBARGOED until 1 May 2011

Ren, Lu Unknown Date (has links)
Content removed from thesis due to copyright restrictions: Winger, R.J. and L. Ren (2009). "Solubility of sodium and potassium iodates in saturated salt solutions." Food Chemistry 113: 600-601. / This paper was to improve the production of calcium-induced alginate gels manufactured by a company in Auckland. Problems encountered included yield and syneresis of the beads post-gelation. Essentially the alginate, sugars and other ingredients were dissolved in water at 80ºC. The pH of the solution was adjusted and the alginate beads were extruded into a 5% CaCl2 bath before being drained and dried. The chemical reaction between sodium alginate and calcium ions is dependent upon the solubility and availability of calcium ions. Some calcium salts (e.g., CaCl2, calcium lactate) were readily soluble and fully dissociated in water and resulted in an immediate gelation of the alginate. Dicalcium phosphate (DCP) was sparingly soluble at pH 7 and calcium ions were not released significantly until the pH reached about pH 4.2. Sodium hexametaphosphate (SHMP) is a chelating agent and this was used to soak up small quantities of Ca+2 to ensure no gelation occured while the alginate was being mixed. The optimum quantities of alginate, DCP and SHMP were defined in the laboratory trials. The use of SHMP, maltodextrin, and gums significantly affected the hardness and stickiness of gel beads. It was found that the combination of xanthan and alginate Protanal LF 120 gave the best results in terms of minimal stickiness and maximum yield after drying. Key words: alginate gel beads, syneresis, formula, pH, citric acid, gelation time, SHMP, setting time, yield rate, drying, hardness, stickiness, maltodextrin, xanthan gum, guar gum, stickiness by touching, leakage, apparent viscosity.
85

The Effect of Dosage Rate on The Chemical and Sensory Changes Occurring During Micro-oxygenation of New Zealand Red Wine

Dykes, Stuart January 2008 (has links)
The technique of micro-oxygenation involves the deliberate addition of continuous, metered amounts of oxygen into a vessel of bulk wine during the maturation period (between the end of fermentation and bottling). The aim of the process is to improve the sensory properties of red wine, particularly the mouthfeel characteristics associated with the various polyphenol constituents. The success of the process appears to depend strongly on the ability to control the rate of oxygen dosage. The effect of dosage rate on the chemical and corresponding sensory changes of a red wine is the central theme of this thesis. A method of dosing oxygen (at typical micro-oxygenation rates) into small volumes of wine (<100 litres) was developed using a dense polymer membrane diffuser. It was clearly demonstrated that wine could be reliably oxygenated at very low rates using a coiled length of FEP as the diffuser material. Oxygen dosage was regulated by adjusting the oxygen pressure inside the tube. The advantage with a dense polymer diffuser is that no bubbles are generated and the oxygenation efficiency is 100%. The diffuser was fully modeled and characterised for use in the laboratory scale trials detailed in Chapters Four and Six. The small scale oxygenation equipment was used to conduct a fully replicated experiment to investigate the evolution of a Cabernet Sauvignon wine under four oxygenation treatments at dosage rates of 0, 10, 23 and 36 mg/L/mth. The total period of the trial was 105 days. HPLC analysis indicated that the rate change of low molecular weight polyphenols is directly related to the oxygen dosage rate. The concentration of the majority of the identifiable monomers, most notably the anthocyanins decreased throughout the course of the trial. The rate of decrease was directly related to oxygen dosage rate. Thiolysis results showed an increase in mDP for all treatments over the course of the trial until day 77 when they were observed to decrease for all treatments. The decrease in mDP coincided with an addition of SO2 which was investigated in a subsequent trial. Spectrophotometric results indicated that the rate of formation of non-bleachable pigments was directly related to the rate of oxygen dosage with significant differences between the high rates (23 and 36 mg/L/mth) and the low rates (0 and 10 mg/L/mth). The trend for all treatments was for increased levels of stable pigments. The sensory results show that the measured organoleptic temporal development exhibits a similar oscillatory behaviour compared to the anecdotally derived curve presented in figure 1-2. The distinction between the respective phases described in section 1.1.1 was, however less clear. The most significant factor in the model weighting was mouthfeel and astringency which correlates with the observed changes occurring in the wine polypenols during maturation. Overall the laboratory scale trial showed that the chemical polyphenol development was directly related to the oxygen dosage rate. The sensory evolution also appeared to be accelerated with higher oxygen dosage rates, although the oscillatory nature of the sensory response given a single linear input indicates a complex underlying mechanism driving the changes. The effect of SO2 on the development of wine polyphenols with and without oxygen was also investigated. The presence of SO2 was found to have a significant effect on both mDP and the concentration of non-bleachable pigments. mDP was observed to decrease over the six week trial period irrespective of whether oxygen had been added or not. The mDP for the treatments without SO2 increased steadily over the course of the trial. Similarly the formation of non-bleachable pigments was suppressed and even retarded with SO2 present whereas for the treatments without SO2 a steady increase was observed. The implication of these results is that SO2 may have a much larger effect on tannin development than oxygen. The use of electrochemical micro-oxidation (or ELMOX) was examined ostensibly to determine proof of concept and also compare the performance of glassy carbon and titanium as electrode materials against traditional micro-oxygenation. Notable transformations occurred with titanium showing higher levels of ethanal than the other treatments both chemically and by sensory measure. A greater rate of stable pigment formation was also observed for the titanium compared to the other treatments. The respective dosage rates for the glassy carbon ELMOX and traditional micro-oxygenation treatments were too low to be able to discriminate any significant differences compared to the control wine. / AGMARDT Doctoral Scholarship
86

The Effect of Dosage Rate on The Chemical and Sensory Changes Occurring During Micro-oxygenation of New Zealand Red Wine

Dykes, Stuart January 2008 (has links)
The technique of micro-oxygenation involves the deliberate addition of continuous, metered amounts of oxygen into a vessel of bulk wine during the maturation period (between the end of fermentation and bottling). The aim of the process is to improve the sensory properties of red wine, particularly the mouthfeel characteristics associated with the various polyphenol constituents. The success of the process appears to depend strongly on the ability to control the rate of oxygen dosage. The effect of dosage rate on the chemical and corresponding sensory changes of a red wine is the central theme of this thesis. A method of dosing oxygen (at typical micro-oxygenation rates) into small volumes of wine (<100 litres) was developed using a dense polymer membrane diffuser. It was clearly demonstrated that wine could be reliably oxygenated at very low rates using a coiled length of FEP as the diffuser material. Oxygen dosage was regulated by adjusting the oxygen pressure inside the tube. The advantage with a dense polymer diffuser is that no bubbles are generated and the oxygenation efficiency is 100%. The diffuser was fully modeled and characterised for use in the laboratory scale trials detailed in Chapters Four and Six. The small scale oxygenation equipment was used to conduct a fully replicated experiment to investigate the evolution of a Cabernet Sauvignon wine under four oxygenation treatments at dosage rates of 0, 10, 23 and 36 mg/L/mth. The total period of the trial was 105 days. HPLC analysis indicated that the rate change of low molecular weight polyphenols is directly related to the oxygen dosage rate. The concentration of the majority of the identifiable monomers, most notably the anthocyanins decreased throughout the course of the trial. The rate of decrease was directly related to oxygen dosage rate. Thiolysis results showed an increase in mDP for all treatments over the course of the trial until day 77 when they were observed to decrease for all treatments. The decrease in mDP coincided with an addition of SO2 which was investigated in a subsequent trial. Spectrophotometric results indicated that the rate of formation of non-bleachable pigments was directly related to the rate of oxygen dosage with significant differences between the high rates (23 and 36 mg/L/mth) and the low rates (0 and 10 mg/L/mth). The trend for all treatments was for increased levels of stable pigments. The sensory results show that the measured organoleptic temporal development exhibits a similar oscillatory behaviour compared to the anecdotally derived curve presented in figure 1-2. The distinction between the respective phases described in section 1.1.1 was, however less clear. The most significant factor in the model weighting was mouthfeel and astringency which correlates with the observed changes occurring in the wine polypenols during maturation. Overall the laboratory scale trial showed that the chemical polyphenol development was directly related to the oxygen dosage rate. The sensory evolution also appeared to be accelerated with higher oxygen dosage rates, although the oscillatory nature of the sensory response given a single linear input indicates a complex underlying mechanism driving the changes. The effect of SO2 on the development of wine polyphenols with and without oxygen was also investigated. The presence of SO2 was found to have a significant effect on both mDP and the concentration of non-bleachable pigments. mDP was observed to decrease over the six week trial period irrespective of whether oxygen had been added or not. The mDP for the treatments without SO2 increased steadily over the course of the trial. Similarly the formation of non-bleachable pigments was suppressed and even retarded with SO2 present whereas for the treatments without SO2 a steady increase was observed. The implication of these results is that SO2 may have a much larger effect on tannin development than oxygen. The use of electrochemical micro-oxidation (or ELMOX) was examined ostensibly to determine proof of concept and also compare the performance of glassy carbon and titanium as electrode materials against traditional micro-oxygenation. Notable transformations occurred with titanium showing higher levels of ethanal than the other treatments both chemically and by sensory measure. A greater rate of stable pigment formation was also observed for the titanium compared to the other treatments. The respective dosage rates for the glassy carbon ELMOX and traditional micro-oxygenation treatments were too low to be able to discriminate any significant differences compared to the control wine. / AGMARDT Doctoral Scholarship
87

The Effect of Dosage Rate on The Chemical and Sensory Changes Occurring During Micro-oxygenation of New Zealand Red Wine

Dykes, Stuart January 2008 (has links)
The technique of micro-oxygenation involves the deliberate addition of continuous, metered amounts of oxygen into a vessel of bulk wine during the maturation period (between the end of fermentation and bottling). The aim of the process is to improve the sensory properties of red wine, particularly the mouthfeel characteristics associated with the various polyphenol constituents. The success of the process appears to depend strongly on the ability to control the rate of oxygen dosage. The effect of dosage rate on the chemical and corresponding sensory changes of a red wine is the central theme of this thesis. A method of dosing oxygen (at typical micro-oxygenation rates) into small volumes of wine (<100 litres) was developed using a dense polymer membrane diffuser. It was clearly demonstrated that wine could be reliably oxygenated at very low rates using a coiled length of FEP as the diffuser material. Oxygen dosage was regulated by adjusting the oxygen pressure inside the tube. The advantage with a dense polymer diffuser is that no bubbles are generated and the oxygenation efficiency is 100%. The diffuser was fully modeled and characterised for use in the laboratory scale trials detailed in Chapters Four and Six. The small scale oxygenation equipment was used to conduct a fully replicated experiment to investigate the evolution of a Cabernet Sauvignon wine under four oxygenation treatments at dosage rates of 0, 10, 23 and 36 mg/L/mth. The total period of the trial was 105 days. HPLC analysis indicated that the rate change of low molecular weight polyphenols is directly related to the oxygen dosage rate. The concentration of the majority of the identifiable monomers, most notably the anthocyanins decreased throughout the course of the trial. The rate of decrease was directly related to oxygen dosage rate. Thiolysis results showed an increase in mDP for all treatments over the course of the trial until day 77 when they were observed to decrease for all treatments. The decrease in mDP coincided with an addition of SO2 which was investigated in a subsequent trial. Spectrophotometric results indicated that the rate of formation of non-bleachable pigments was directly related to the rate of oxygen dosage with significant differences between the high rates (23 and 36 mg/L/mth) and the low rates (0 and 10 mg/L/mth). The trend for all treatments was for increased levels of stable pigments. The sensory results show that the measured organoleptic temporal development exhibits a similar oscillatory behaviour compared to the anecdotally derived curve presented in figure 1-2. The distinction between the respective phases described in section 1.1.1 was, however less clear. The most significant factor in the model weighting was mouthfeel and astringency which correlates with the observed changes occurring in the wine polypenols during maturation. Overall the laboratory scale trial showed that the chemical polyphenol development was directly related to the oxygen dosage rate. The sensory evolution also appeared to be accelerated with higher oxygen dosage rates, although the oscillatory nature of the sensory response given a single linear input indicates a complex underlying mechanism driving the changes. The effect of SO2 on the development of wine polyphenols with and without oxygen was also investigated. The presence of SO2 was found to have a significant effect on both mDP and the concentration of non-bleachable pigments. mDP was observed to decrease over the six week trial period irrespective of whether oxygen had been added or not. The mDP for the treatments without SO2 increased steadily over the course of the trial. Similarly the formation of non-bleachable pigments was suppressed and even retarded with SO2 present whereas for the treatments without SO2 a steady increase was observed. The implication of these results is that SO2 may have a much larger effect on tannin development than oxygen. The use of electrochemical micro-oxidation (or ELMOX) was examined ostensibly to determine proof of concept and also compare the performance of glassy carbon and titanium as electrode materials against traditional micro-oxygenation. Notable transformations occurred with titanium showing higher levels of ethanal than the other treatments both chemically and by sensory measure. A greater rate of stable pigment formation was also observed for the titanium compared to the other treatments. The respective dosage rates for the glassy carbon ELMOX and traditional micro-oxygenation treatments were too low to be able to discriminate any significant differences compared to the control wine. / AGMARDT Doctoral Scholarship
88

Novel analytical techniques for studying the milk fat globule membrane : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology at Massey University, Palmerston North, New Zealand

Evers, Jacobus Meindert January 2008 (has links)
Video files: Some images may require stereoscopic glasses / Fat in milk and cream is present as tiny droplets, which are each enveloped in a thin membrane, called the milk fat globule membrane (MFGM). The MFGM can easily be damaged by factors such as pumping the milk and applying other forms of agitation. MFGM damage is believed to reduce processing efficiency and compromise the quality of manufactured products. A comprehensive review of the literature showed that our understanding of changes occurring in the MFGM post secretion of the fat globule by the mammary secretory cell is still rudimentary. Furthermore, it was found that a fundamental understanding of MFGM damage in raw milk is lacking. Hence, this study sought to develop analytical techniques for studying the MFGM. Fluorescent probes were identified that associated with the MFGM (bovine, ovine, human) in one of two ways: either by embedding in the phospholipid bilayer (lipophilic probe) or by binding to carbohydrate moieties of glycosylated chains in the glycocalyx (lectin probes). The use of these probes, in combination with either conventional fluorescence microscopy or confocal laser scanning microscopy, allowed 2-D images and 3-D images of fat globules to be made. Application of water-soluble lipophilic probes and the lectin wheat germ agglutinin (WGA) directly to milk allowed the staining of the MFGM in its native environment. Variable distribution patterns of the probes in the MFGM were observed, which suggests that the MFGM of fat globules in harvested milk is structurally and chemically heterogeneous both within and among globules from the same species and between species, and even among fat globules within the milk of an individual animal. Furthermore, the binding behaviour of WGA to the MFGM of native fat globules (in bovine milk) and washed fat globules (in model systems) following heat treatment implicated β-lactoglobulin, α-lactalbumin, immunoglobulin M and/or the glycosylated proteins Periodic acid Schiff 6/7 in the disappearance of fat globule aggregation upon elevated heat treatment of milk. The results of the current study showed that the use of membrane-specific fluorescent probes, particularly in combination with confocal laser scanning microscopy, has significant potential for providing real time structural and chemical information about the MFGM in matrices such as harvested milk and milk products. In addition to the fluorescence microscopy techniques, development of other techniques was also conducted. Flow cytometry was shown to have significant potential for the quantitative determination of various properties of fat globules and their membranes. Although no suitable sample preparation technique could be developed in this study, atomic force microscopy is believed to have significant potential for studying structural and physical properties of the MFGM. Selective harvesting of individual fat globules was shown to be possible by using a micromanipulator. In future work, this technique is expected to be used in combination with fluorescence microscopy, or atomic force microscopy. The present study has shown that the development and application of novel analytical techniques has advanced, and in the future will further advance, understanding of the MFGM.
89

Antimicrobial peptides isolated from ovine blood neutrophils : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biotechnology at Massey University, Palmerston North, New Zealand

Anderson, Rachel C January 2005 (has links)
Content removed due to copyright restrictions: Anderson, R.C., Wilkinson, B. & Yu, P.L. (2004). Ovine antimicrobial peptides: new products from an age-old industry. Australian Journal of Agricultural Research, 55(1),69-75. Anderson, R.C. & Yu, P.L. (2003). Isolation characterisation of proline/arginine-rich cathelicidin peptides form ovine neutrophils. biochemical and biophysical research communications 312(4), 1139-1146. Anderson, R. C., Hancock, R.E.W. & Yu, P.L. (2004). Antimicrobial activity and bacterial membrane interaction of ovine-derived cathelicidins. Antimicrobial Agents and Chemotherapy, 48(2), 673-676. Anderson, R.C., Haverkamp R. & Yu, P.L. (2004). Investigation of morphological changes to S. aureus induced by ovine-derived antimicrobial peptides using TEM and AFM. FEMS Microbiology Letters, 240(1), 105-110. Anderson, R.C. & Yu, P.L. (2005). Factors affecting the antimicrobial activity of ovine-derived cathelicidins against E. coli 0157:H7. International Journal of Antimicrobial Agents 25, 205-210 / The aim of the research presented in this thesis was to investigate the properties of the antimicrobial peptides found in ovine blood, in order to assess their potential as a high-value product. Due to the large number of lambs and sheep that are slaughtered New Zealand (approximately 25 million lamb and 5 million sheep per year), there are considerable volumes of ovine blood available for processing (approximately 40 million litres per year). Currently this blood is dried and sold as a low value product. The first objective of this research was to purify and characterise the antimicrobial peptides isolated from ovine neutrophils. A number of proline/arginine-rich peptides, as well as two small fragments of larger proteins, that displayed antimicrobial activity were identified. The second objective of this research was to investigate the mechanism of action of ovine antimicrobial peptides. For this investigation, three ovine peptides, α-helical SMAP29 and proline/arginine-rich OaBac5mini and OaBac7.5mini, were synthesised. Of these, SMAP29 was the most potent. The three peptides all bound Gram-negative bacterial LPS and caused the outer membrane to be permeabilised. SMAP29 caused significant depolarisation of the cytoplasmic membrane that led to cell lysis. However, the other two peptides only caused slight depolarisation of the cytoplasmic membrane, which indicates that they probably passed through the membrane to interact with the inner cellular contents. The third objective of this research was to investigate the morphological changes to bacterial cells induced by the ovine antimicrobial peptides. Transmission electron microscopy and atomic force microscopy confirmed that SMAP29 caused significant damage to the membranes of bacterial cells and induced cell lysis; whereas, OaBac5mini caused minor alterations to the bacterial membranes but did not induce cell lysis. The fourth objective of this research was to determine the effect of the environmental conditions on the activity of the peptides. The peptides were very stable over a range of pH values and when heated to temperatures up to 80°C. The activity of the peptides decreased slightly in the presence of monovalent cations and was inhibited by the presence of divalent cations. The peptides were significantly more active in combination than individually, and they were strongly synergistic with polymyxin B, a peptide antibiotic. The final objective of this research was to develop a pilot-scale extraction process for the isolation of antimicrobial peptides from ovine blood. The laboratory-scale process was simplified and adapted to design a process that could be used industrially. The crude pilot-plant extract was active against a broad-range of food pathogens and disease causing organisms. The antimicrobial peptides found in ovine blood have the potential to be used as biopreservatives for chilled lamb products, or in a topical cream for cuts and grazes; therefore it is recommended that further research is carried out to investigate the above applications and. if successful, the feasibility of commercialising the technology.
90

Air-suspension coating of dairy powders : a micro-level process approach : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Technology at Massey University, Palmerston North, New Zealand

Werner, Stephen R. L. January 2005 (has links)
Air-suspension particle coating is a process by which thin coatings are applied to powder particles. The coatings can be formulated to act as permeable barriers to increase powder shelf-life or to impart controlled release character. The ultimate objective of a coating operation is to produce individual particles, each with a well-controlled, even coating. This project was focused on the air-suspension coating of fine powders of ~100 µm in diameter for the dairy industry. Despite the widespread use of the technology in the pharmaceutical industry, its use in the food industry has been limited. Little is known about the fundamental mechanisms, and so published work to date is product and equipment specific and is statistical in the way the experimental design and analysis has been approached. This 'black box' approach is time consuming and costly. Better methods based on an understanding of the physical and chemical mechanisms are needed to deal with the numerous products and constantly changing formulations typical of the dairy industry. This thesis proposes a new approach to air-suspension particle coating research. The basis of this 'micro-level process approach', is to deconvolute the complex coating process into smaller manageable parts based on classical physical phenomena for which descriptions already exist. The thesis identifies and develops an understanding of the key micro-level processes controlling coated product quality and process performance. Four were selected for further study: drying, droplet impact and spreading, and stickiness which encompasses the two key micro-level processes of droplet impact and adherence and inter-particle agglomeration. They were studied separately to deconvolute the variable effects and interactions. Kinetic data were collected for the drying droplets containing maltodextrins, whey protein isolate and gum arabic. A mathematical model, based on 'ideal shrinkage' was developed to predict the drying kinetics of single droplets with particular interest in the development of the surface glass transition temperature. The model accurately predicted the kinetics until significant morphological changes occurred in the droplet. To better predict the kinetics late in the drying process, the droplet radius was set to be constant at a time based on the surface proximity to the surface glass transition temperature (critical X concept). This was done to arrest droplet shrinkage in line with experimental observations and to more accurately depict the drying of high molecular weight, amorphous glass forming polymers. After this point, a new flexible calculation scheme was used to better predict the variation in internal droplet structure as either a dense, 'collapsed shell' structure or a 'dense skin-porous crumb' structure. Further study should focus on the surface and internal droplet structure (porosity and mechanical integrity) development during drying, particularly the conditions leading to the arresting of the droplet radius and the subsequent rate of skin thickness progression. The critical X concept was used to make industrial-scale predictions of the optimum drying conditions that ensure maximum droplet impact and adherence efficiency and minimum inter-particle agglomeration in a Würster-style coating operation. This enabled the prediction of two key design parameters, the nozzle distance from the powder impact point and the Würster insert height. The span in design parameters showed that there is significant opportunity for design optimisation based on the critical X concept. A probe tack test was used to map the level of stickiness of droplets of different coating materials as they dried. As skin formation progressed, the stickiness passed through a maximum, in most cases to arrive at a point at which the droplet was no longer sticky at all (non-adhesive state). The maximum point of stickiness represents the ideal state to ensure successful droplet-substrate impact and adherence. The minimum point of stickiness represents the ideal state to prevent unwanted inter-particle agglomeration. The time interval between the onset of stickiness and the non-adhesive state was particularly dependent on the addition of plasticisers, but also on the formulation and the drying air conditions. Future work should look to establish a possible relationship between the surface glass transition temperature and the probe tack test stickiness measurements. The impact and spreading of droplets containing maltodextrin DE5 on to solid anhydrous milkfat was studied using a high speed video camera. It was found that the final spread diameter was able to be fixed close to the maximum spread diameter by using surfactants, thus avoiding significant recoil. Because existing literature focuses on predicting the maximum spread diameter, this work defines a need for adequate prediction methods for the final spread diameter, as this is the significant parameter in coating applications. Formulation and operating guidelines were established to independently optimise each micro-level process. These were used in a series of population based coating experiments in a pilot-scale Würster coater. This study highlighted the limited flexibility of the standard 'off-the-shelf' Würster coating apparatus for the coating of fine sized dairy powders. Because of this, the validation of the guidelines were inconclusive and optimisation could not be carried out. Further validation work is required on a custom-built apparatus for dairy powders. This work has advanced the fundamental knowledge of the coating process and is independent of material, equipment and scale. This knowledge, based on physical and chemical mechanisms, can be used to develop coating formulations and identify optimum process conditions for successful coating in less time and at less expense than is current practice. The next step is to put the guidelines into practice and craft the engineering of a continuous coating apparatus for dairy powder applications.

Page generated in 0.0759 seconds