• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 122
  • Tagged with
  • 202
  • 202
  • 121
  • 120
  • 118
  • 117
  • 116
  • 116
  • 116
  • 116
  • 78
  • 78
  • 78
  • 71
  • 53
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Control of Salmonella Gallinarum (Fowl Typhoid) in Poultry with Phage-based Interventions

Saud Ur Rehman (13162020) 27 July 2022 (has links)
<p>The  Pakistan  poultry  industry  has  developed  into  the  11thlargest  poultry  industry  in  the world  and  poultry  products  provide  high-quality  and  affordable  protein  sources  to  communities throughout the country. However, <em>Salmonella </em>Gallinarum, the etiological agent for fowl typhoid, is  endemic  in  Pakistan  with  infections  leading  to  high  mortality  and  substantial  economic  loss. Currently, <em>Salmonella </em>Gallinarum  infectionsin  Pakistan  poultry  are  controlled  with  antibiotics. The continued emergence of antibiotic resistance, however, has led to global initiatives to reduce the  use  of  antibiotics  in  both  human  and  veterinary  medicine.  Concurrently,  the  Pakistan government  recently  introduced  new  national  policies  that  limit  the  use  of  antibiotics  for performance  in  livestock  and  poultry  production.  As  such,  controlling  bacterial  infections  in poultry  without  increasing  the  likelihood  of  antibiotic use could  ensure  the  sustainability  of Pakistan  poultry  production  without  posing  risks  to  public  health.  Toward  this  end,  we hypothesized that <em>Salmonella</em> Gallinarum infections inchickens could be prevented or otherwise controlled through the use of phages. To test this hypothesis, wastewater samples were collected from Lahore, Pakistan and different cities of Indiana, US and processed to isolate bacteriophages. The  phages  were  characterized  in  terms  of  morphology,  host  spectra,  lytic  capacity,  genomic sequencing,  and  survivability  in  different  environments. Transmission  electron  microscopy showed these phages belonged to myoviridae (n = 5) and podoviridae (n = 1) families. Spectrum analysis  revealed  that  each  phage  lysed  at  least  8  out  of  10  different  strains  of <em>Salmonella </em>Gallinarum and significantly reduced (P < 0.05) <em>Salmonella </em>Gallinarum when co-cultured in liquid medium with the bacterium. Stability of the phages was tested insimulated gastric fluid (SGF; pH= 2.5) andsimulated intestinal fluid (SIF; pH~6.8). Results showed that phage concentrationswere reduced to undetectable levels when exposed to SGF for more than 5 minutes. However, exposure to SIF did not result in appreciable reductions in phage concentrations. To mitigate potential effects of  gastric  environments,  phages  were  encapsulated  using  a  sodium  alginate-based  method.  In contrast  to  unprotected  phages,  encapsulated  phages  remained  viable  (~100%)  after  30  minutes exposure to SGF. Additionally, encapsulation efficiencies ranged between 90-99%. Encapsulated phages were sequentially incubated in SGF (30 minutes) and SIF(120 minutes) to determine the rate  of  release  of  the  phages  from  capsules. All  phages  were  released from  capsules after  60 minutes  of  exposureto  SIF. To  determine  if  the  phages  effectively  controlled <em>Salmonella </em>Gallinarum infections in chickens, 100, day-old Jumbo Cornish Rock Cross birds were randomly assigned  to  one  of  four  treatments:  1)  Control 1  (bacterial  challenge,  no  phage  treatment);  2) Control 2 (no phage or bacterial challenge); 3) challenged with SalmonellaGallinarum and treated with  unprotected  phages;  and  4)  challenged  with <em>Salmonella</em> Gallinarum  and  treated  with encapsulated phages. At7 d of age, chicks receiving the bacterial challenge were administered 5 X106CFU (500 μL) of <em>Salmonella</em> Gallinarum. For birds in phage treatment groups, the phages were administered (500 uL; 5 X108 PFU/mL or g) at 0, 12, and 24 hours post-challenge. Six birds from each group were euthanized at 1, 2, and 4 days post-challenge (dpc) and cecal SalmonellaGallinarum  concentrations  were  quantified.  At 1  dpc, birds  treated  with  unprotected  and encapsulated  phages  had significantly lower (P  <  0.05) SalmonellaGallinarum concentrations(4.36 ± 0.20and 5.05 ± 0.22 logCFU/g, respectively) than those found in untreated birds (5.71 ± 0.13). Likewise,  at4  dpc, <em>Salmonella </em>Gallinarum concentrationsin  ceca  of  birds  treated  with encapsulated and unprotected phages were significantly lower (P < 0.05; 3.26 ± 0.62 and 4.02 ± 0.15 log  CFU/g,  respectively)  than  those  found  in untreated  birds(4.65  ±  0.08log  CFU/g). A second trial was conducted with higher challenge doses (1 mL at 1× 109CFU) and an additional treatment including a mixture (1:1) of unprotected and encapsulated phages. At1dpc, <em>Salmonella</em> Gallinarum concentrations  in the ceca  of  birds  treated  with unprotected  phages,  encapsulated phages, and a mixture of unprotected  and encapsulated phages  were significantly lower(4.28 ± 0.11, 3.72 ± 0.40, and 3.81 ± 0.36log CFU/g, respectively) than found in those of untreated birds (5.26 ± 0.19log CFU/g). At 2 dpc, concentrations of<em> Salmonella </em>Gallinarumin the ceca of birds treated  with  unprotected,  encapsulated,  and  a mixture  of  unprotected  and  encapsulated  phages were significantly  lower  (P  <  0.05; 4.31  ±0.53, 3.96  ±0.61,  and 4.38  ±  0.44logCFU/g, respectively) than those found in the ceca of untreated birds (5.72 ± 0.27logCFU/g).However, no significant differences were found in concentrations of <em>Salmonella</em> Gallinarum in the ceca of birds treated with encapsulated phages versus those treated with unprotected phagesor a mixture of   encapsulated   and   unprotected   phages.   Similarly,   at   4   dpc, <em>Salmonella </em>Gallinarum concentrations in the ceca  of  birds  treated  with unprotected  phages, encapsulated  phages,  and  a mixture of unprotected and encapsulated phages were significantly lower (3.17 ± 0.45, 3.56 ± 0.51, and 3.81 ± 0.54log CFU/g, respectively) than found in those of untreated birds (5.79 ± 0.08log CFU/g). At  7  d  post-challenge,  concentrations of <em>Salmonella</em> Gallinarum in  the  ceca  of  birds treated  with mixture  of  unprotected  and  encapsulated phages(2.40  ±  0.55log  CFU/g)  were significantly lower (P  <  0.05) than  those  found  in the ceca  of  untreated  birds(7.08  ±  0.19log CFU/g). Similarly,  concentrations of<em> Salmonella</em> Gallinarum  in the  ceca of  birds  treated  with encapsulated and unprotected phages were significantly lower (P < 0.05; 4.29 ± 0.39and 4.60 ± 0.37 log  CFU/g,  respectively)  than  those  found  in  untreated  birds.  Taken  together,  these  data indicate that <em>Salmonella </em>Gallinarum infections could be controlled with phage-based treatments. Additionally, the use of a mixture of unprotected and encapsulated phages may be more effective, presumably  by  allowing  unprotected  phages  to  act  immediately  in  the  proximal  gastrointestinal tract  (GIT;  e.g.,  crop)  with  encapsulated  phages  having  greater  activity  once  released  from capsules in the distal small intestine. While no deleterious effects of the phages were observed on the chickens themselves, continuing studies should more comprehensively assess host-response to phage treatment including potential impact on microbial communities throughout the chicken GIT.</p>
122

<b>Exploring Work Expectations of National FFA Alumni Belonging to Generation Z</b>

Oluwatosin Benjamin Fakunle (19193278) 22 July 2024 (has links)
<p dir="ltr">With the accelerating pace of Baby Boomer retirements from the workforce, agricultural companies need to understand how to recruit and retain the upcoming generation of workers. The generation currently entering the workforce has been labeled Generation Z. The purpose of this study was to describe workplace attractiveness factors for FFA members belonging to Generation Z. Research questions were: 1) What factors of employer attractiveness is considered important to FFA Alumni belonging to Gen. Z and 2) What is the relationship between the respondents’ demographics and the factors/values of employer attractiveness?</p><p dir="ltr">The population for this study were past FFA members between the ages of 18 and 25 who were a part of one of three groups: American Degree recipients, FFA Alumni, or Forever Blue Network. This study was conducted in the spring of 2023 using Qualtrics. Conclusions from this study include agricultural employers must incorporate the five workplace attractiveness values into their organizational culture, policies, and practices; Generation Z employees who are unwilling to move for the job are less likely to be willing to meet company expectations beyond a typical work week; and Generation Z employees with a BS degree value a supportive company.</p><p dir="ltr">Agricultural employers can use the findings from this study to tailor their recruitment strategies and the findings can also guide School-Based Agricultural Education in its preparation of students for agricultural careers while ensuring the industry's continual growth and relevance by aligning education, career pathways, and employer engagement with the preferences of Generation Z.</p>
123

Investigating Phenolic-Mediated Protein Matrix Development for Potential Control of Cereal Starch Digestion

Leigh C R. Schmidt (6869153) 15 August 2019 (has links)
<div>Shifts in the human diet to more refined foods and ingredients have contributed to the rise in metabolic disease rates associated with long-term consumption of foods causing swift rises in blood glucose response. Foods which result in a more moderate blood glucose curve are considered healthier by increasing satiety and reducing oxidative stress. Sorghum products contain naturally slowly digested starch. The matrix of sorghum porridges contains kafirin protein bodies which cross link around gelatinizing starch molecules, while similar nascent matrices in other cereals aggregate and collapse. The 3-deoxyanthocyanidin pigments unique to sorghum may be accountable for the difference in matrix stability. The density of the starch entrapped in the matrices is thought to partially inhibit α-amylase access to the starch, reducing overall starch digestion and thereby mitigating glucose response. The purpose of this work was to increase our understanding of how phenolic compounds in sorghum interact with endosperm proteins to create a stable matrix, and to explore if the knowledge might be translated to other starchy cereal products. In the first study, phenolic extracts from flours (sorghum, corn masa, white rice) were characterized for phenolic content, antioxidant activity, phenolic components, and their ability to interact with a model protein system (ovalbumin) in order to examine protein polymerization. In the second study, specific phenolic compounds in sorghums (<i>p</i>-coumaric, sinapic, and gallic acids; (+)-catechin; and apigeninidin, a 3-deoxyanthocyanidin found in sorghums) were interacted in the model protein system at different concentrations to observe extent and type of protein polymerization, and promising compounds subjected to fluorescence quenching spectroscopy to examine the nature of the interactions. The final study explored the effects of apigeninidin addition to a yellow corn flour and naturally present anthocyanin (blue corn) on starch digestion and microstructure of porridges by utilizing an <i>in vitro</i> α-amylase assay and confocal microscopy. </div><div>The slow digestion of starch in cooked sorghum products can be attributed to the 3-deoxyanthocyanidin compounds present in the grain participating in sulfhydryl-disulfide interchanges which results in extensive kafirin cross-linking surrounding starch granules. While other phenolic and redox-active components may affect matrix formation and stability, 3-deoxyanthocyanidins appear to have the most direct influence, and their ability to modify food protein matrices appears to have a direct result on starch digestion <i>in vitro</i>.</div>
124

POST HARVEST STORAGE OF BIOFORTIFIED MAIZE IN PURDUE IMPROVED CROP STORAGE (PICS) BAGS AND EFFECT ON SUBSEQUENT FLOUR RHEOLOGY AND CAROTENOID BIOACCESSIBILITY

Smith G Nkhata (6668768) 15 August 2019 (has links)
<p>Successful adoption of biofortified orange maize in developing countries requires careful consideration of factors across the chain from farm to fork. This includes consideration of post-harvest storage conditions optimal for the retention of both proviatamin A carotenoids and cooking quality critical to consumers. In these considerations, identification of economical storage methods is critical considering the limitations within specific countries that biofortified maize is being disseminated. To address these points, this dissertation research focused on evaluation of the utility of the Purdue Improved Crop Storage (PICS) bags as a post-harvest storage solution for biofortified maize. The specific focus of this research was to monitor retention of provitamin A and other carotenoids in two biofortified maize genotypes (OPVI and OPVII) as well as storage effect on flour functionality. Finally, a preliminary assessment of the impacts of storage on carotenoid bioaccessibility was completed to begin to translate findings to practice.</p><p>Maize grain from 2016 harvest was stored at ambient conditions for eight months in either PICS bags with or without an O<sub>2</sub> scavenger, (PICS-oxy) and (PICS-noxy), respectively and compared to storage in common polypropylene woven bags (control). After 4 months of storage carotenoid content was significantly higher (p<0.05) in PICS-oxy compared to PICS-noxy and woven bags demonstrating the importance of entrapped oxygen on maize carotenoid degradation. Furthermore, differences in carotenoid stability between maize genotypes were observed with OPVI having higher retention than OPVII. After 8 months, carotenoid retention remained dependent on storage bag and genotype with retention being greater in PICS-oxy and PICS-noxy compared to woven bags. However, final levels after 8 months were more similar between storage methods. Overall, oxygen content and genotype were found to be determining factors in the effectiveness of PICS to mitigate carotenoid degradation during post-harvest storage of maize.</p><p>While reducing the rate of carotenoid degradation during postharvest storage of biofortified maize is important, success of biofortified maize is also dependent on consumer adoption of these grains and their performance in traditional food preparation. Assessment of the rheological and functional properties of these two biofortified maize genotypes as a function of post-harvest storage was completed to assess the impact of post-harvest storage in PICS bags on flour functionality and rheological properties for the two biofortified orange maize genotypes and a control white maize genotype. Flour pasting profiles were assessed initially and at 4 and 8 months. After 8 month storage in woven and PICS bag, OPVI and OPVII produced porridges with similar viscosities to their initial viscosities regardless of postharvest storage type. White maize viscosities progressively decreased with storage and were significantly lower (p<0.05) in woven compared to PICS storage. Sequestration of oxygen (PICS-oxy) had modest but significant effects (p<0.05) on key pasting parameters including peak and final viscosities. These results suggest that oxygen sequestration has a critical effect on final flour functionality. DTT treatment partially restored flour pasting profiles suggesting disulfide linkages may modify pasting profiles of flour. There was also an increase in free ferrulic and <i>p</i>-coumaric acids during storage which may have contributed to observed decreases in porridge viscosities. Evidence of this was found through Raman spectroscopy with spectral intensity at both 478cm<sup>-1</sup> and 2911cm<sup>-1</sup> decreasing with storage suggesting the potential for structural changes induced by storage on starch polymer. While storage in PICS bags does not seem to adversely affect flour functionality it may provide some additional economic benefit resulting from requiring proportionally less flour to achieve similar final viscosities as flour from woven bag stored grains. </p><p>Finally, the effect of postharvest storage on bioaccessibility of carotenoids was explored using experimental wet cooked porridges made from ‘fresh’ and stored grains using an established three stage in-<i>vitro</i> digestion model. Relative carotenoid bioaccessibility (% micellarization) was generally higher in less viscous porridge made from grains stored in woven bags compared to porridge from initial or PICS bags stored grains suggesting that higher viscosity might partly explain lower relative bioaccessibility in porridge from grains stored in PICS bags. Absolute carotenoid bioaccessibility from experimental porridge was dependent on carotenoid species and storage system. Extrapolation of relative bioaccessibility (%) to absolute bioaccessibility (µg/g flour) suggests that fresh grains and their corresponding porridges would provide more absolute bioaccessible carotenoids compared to stored grains despite some improvement in relative accessibility. As such, storage losses remain the main factor impacting total available carotenoids and should continue to be an area of focus for future mitigation. With the potential to minimize post-harvest losses, improve carotenoid retention and provide a product with improved cooking performance, PICS bags do appear to offer a viable storage alternative to improve both food and nutrition security in developing countries.</p><p></p>
125

Sustainable Agri-food Production and Consumption

James D. Chapa (5930576) 11 June 2019 (has links)
Agri-food production is necessary to sustain the growing global population, but it adversely impacts the environment in various ways, including climate change, eutrophication, acidification, land and water uses, and loss of biodiversity, etc. These environmental impacts can also negatively affect human health, which could in theory outweigh the health benefits of nutritious food. While better agricultural practices need to be developed and applied to minimize the environmental burdens associated with the production chains, consumers are expected to implement more sustainable lifestyles and eat more environment-friendly foods. Life Cycle Assessment (LCA) is an analytical tool to evaluate the sustainability of a product by examining all the resources used and emissions generated during its life cycle. The first part of this work focused on the upstream production. An LCA of organic blueberry production was conducted to evaluate the trade-off between seasonal and local options and answer the question of whether imported fresh or domestic frozen blueberries are more sustainable. Fresh blueberries from Chile showed superior environmental performance within 2-week storage, due to lower electricity use associated with refrigeration and higher farming yield. Furthermore, length of storage and transportation distance were also found important; if farming yields are comparable, consumption of locally produced, fresh blueberries will be a better choice because of less energy use and shorter transportation distance. The second part of this work targeted at the downstream consumption and aimed to reduce the U.S. environmental footprint through changing adult eating habits. Supplemental functional units were applied in the LCA to incorporate the functions of food to provide nutrition and satiety. With controlled caloric intake, vegetarian diets were found overall more sustainable. However, large possible variations in the environmental impacts of the compared diets were observed due to wide range of nutritional quality of selected foods. Animal products, including meat and dairy especially, and discretionary foods were identified as hotspots in the American diet, that is, reducing the consumption of these foods or deliberately choosing more sustainable alternatives within the same food categories, like chicken and low-fat milk, can significantly improve the sustainability of current American dietary patterns. <br>
126

Differential Effects of Chronic Low Calorie Sweetener Consumption on Body Weight, Glycemia, and Ingestive Behavior

Kelly A. Higgins (5929742) 17 January 2019 (has links)
<p>Low calorie sweeteners (LCS) provide sweetness with little to no energy. Each sweetener has a unique chemical structure that possesses unique sensory and functional characteristics. While LCS are generally considered in aggregate, these unique chemical structures have potential implications for sensory, metabolic, and behavioral differences that may impact body weight and glycemia. Therefore, two, twelve-week experiments were conducted to determine the effect of chronic LCS consumption on body weight, glycemia, and ingestive behaviors. </p> <p>The first experiment investigated the differential effects of four LCS (saccharin, aspartame, rebaudioside A, and sucralose) and sucrose consumed for twelve weeks on body weight, glycemia, and ingestive behaviors among healthy adults with overweight or obesity (body mass index (BMI) between 25 and 40 kg/m<sup>2</sup>). In a parallel-arm design, 154 participants were randomly assigned to consume 1.25 to 1.75L of beverage sweetened with 1 of the 5 sweeteners daily for 12 weeks. Body weight was measured every two weeks; energy intake, energy expenditure, and appetite were assessed every 4 weeks; and glucose tolerance was measured at baseline and week 12. Every four weeks, participants completed 24-hour urine collections to determine study compliance via PABA excretion. Sucrose and saccharin consumption led to increased body weight across the 12-week intervention (Δ weight = +1.85 and +1.18kg, p ≤ 0.02) and did not differ from each other. While there was no significant change in body weight with consumption of the other LCS treatments compared to baseline, changes in weight in comparison to the sucrose treatment (sucrose – LCS) were significantly different for aspartame, rebA, and sucralose after 12 weeks (weight difference = 1.13, 1.25, 2.63kg, respectively; p ≤ 0.03). In addition, change in body weight at week 12 was significantly lower between sucralose and all other LCS (weight difference ≥ - 1.37 kg, p=0.008).</p> <p>The second experiment investigated the effect of daily aspartame ingestion on glycemia, body weight, and appetite. One hundred lean (BMI between 18 and 25 kg/m<sup>2</sup>) adults were randomly assigned to consume 0, 350, or 1050 mg aspartame/day for twelve weeks in a parallel-arm design. This experiment followed a similar protocol but measured body weight and blood pressure weekly and contained a 240-min glucose-tolerance test (OGTT) with measurements of selected hormones at baseline and week 12. Participants also collected 24-h urine samples every four weeks. There were no group differences for glucose, insulin, resting leptin, glucagon-like peptide 1, or gastric inhibitory peptide at baseline or week 12. There also were no effects of aspartame ingestion on appetite, body weight, or body composition. </p> <p>These trials demonstrate that all LCS contribute negligible energy but should not be aggregated because of their differing effects on body weight. Sucrose and saccharin consumption significantly increased body weight compared to aspartame, rebA, and sucralose. This differential change in body weight among LCS indicates individual LCS likely exert different physiological responses beyond the contribution of sweetness with negligible energy. Saccharin, rebA, sucralose, and aspartame (ingested at three doses) for twelve weeks had no effect on glycemia. These data do not support the view that LCS are problematic for the management of glycemia. If substantiated through additional testing, findings from this trial have implications for consumers, food industry, clinicians, and policy makers. Some LCS may not hold the anticipated beneficial effects on body weight (e.g., saccharin) and positive effects of one LCS (sucralose) may be attenuated if combined with select other LCS. Going forward it will be important to consider each LCS as a distinct entity with respect to its potential health effects.</p>
127

FOOD MATERIALS SCIENCE: EFFECTS OF POLYPHENOLS ON SUCROSE CRYSTALLIZATION AND CHARACTERIZATION AND CREATION OF ALTERNATIVE SALTS OF THIAMINE

Collin J. Felten (5930618) 17 January 2019 (has links)
<div> <p>Proper understanding of materials science is critical in understanding the functionality of ingredients in food products, as well as their behavior in these products over time. Amorphous materials are metastable, eventually rearranging to the thermodynamically stable crystalline state. Amorphous materials have properties which are beneficial in some food products: they are softer in texture and dissolve more rapidly. The amorphous state of sucrose might provide an increase in quality in applications like powdered beverages where rapid dissolution is preferred. A number of classes of compounds have been shown to delay the crystallization of amorphous sucrose; however, polyphenols, particularly their glycosylated forms, have been little explored. Glycosylated polyphenols contain two distinct structural regions: a more hydrophilic sugar unit(s) and a more hydrophobic polyphenol backbone. While the sugar unit should be able to easily associate with sucrose molecules, the polyphenolic backbone may not and might provide hindrance to crystal nucleation and growth.</p> <p> </p> <p> Thiamine is an essential nutrient that is found naturally in foods such as whole grains and pork. The processing of grains removes nearly the entirety of the natural thiamine content; thus, foods are often enriched with synthetic thiamine. Two salts of thiamine are used commercially: thiamine mononitrate and thiamine chloride hydrochloride. The two forms have specific applications driven by their specific properties, specifically their aqueous solubility and hygroscopicity. While these two salts provide adequate functionality, it is possible new salts may have properties beneficial in certain food applications. A method making use of silver nitrate was developed to produce new salt forms. An intermediate in this reaction, TCl·H<sub>2</sub>O, was characterized including measurements of stability in aqueous solutions and solid state properties.</p> </div> <br>
128

Advanced Characterization of Glucan Particulates: Small-granule Starch, Retention of Small Molecules, and Local Architecture Defined by Molecular Rotor

Xingyun Peng (5930138) 04 January 2019 (has links)
<p>The discovery and utilization of novel starches with unique superb properties are highly demanded for modern industrial uses. Small-granule starch (SGS) is a category of unconventional starches with the granular size smaller than 10 μm. The potential use of SGS includes many conventional and novel high-value applications, such as texturizing, fat replacement, encapsulation, controlled delivery and nano-engineering. In the present work, we focused on three SGS isolated from amaranth (<i>Amaranth cruentus</i>), cow cockle (<i>Saponaria vaccaria</i>) and sweet corn (<i>sugary-1</i> maize mutant). The basic structural and unique physical properties of SGS were characterized and compared to common large-granule food starches. It was found that (1) the highly branched amylopectin contributed to low crystallinity and pasting viscosities of sweet corn starch, (2) cow cockle starch exhibited high shear-resistance and low retrogradation in prolonged storage, and (3) the amylopectin for amaranth starch was less branched with small clusters, which was associated with the high crystallinity, medium shear-resistance and low pasting viscosity of amaranth starch. Despite the small size of starch granules, SGS in both native and swelling states showed the capacity of retaining small molecules. Compared to large-granule starch, native SGS are more difficult for small molecules to reach an equilibrium permeation. This work provides insights to the fine structure and physicochemical behaviors of selected high-potent SGS, which is believed to support the industrial production and application of SGS in the future.</p> <p>The characteristics of local polymeric structure dominate many critical properties of glucan particles, such as starch retrogradation and the loading and stabilizing of active substance. Molecular rotor (MR), a fluorescent probe, was proposed to fulfill the simple, high-sensitive, and quantitative-based characterization of local glucan architecture (LGA). In the present work, two innovative studies relevant to this novel method were conducted: (1) MR was able to characterize glucans based on its unique fluorescent response to characteristic LGA, (2) MR was able to sensitively probe and visually demonstrate the transition of LGA induced by starch retrogradation. This novel MR-based approach is expected to advance carbohydrate-related researches in the future.</p>
129

Investigating Stability in Amorphous Solid Dispersions: A Study of the Physical and Chemical Stability of Two Salt Forms of Thiamine and the Physical Stability of Citric Acid

Seda Tuncil (5930339) 03 January 2019 (has links)
The majority of water soluble vitamin and organic acid food additives are distributed in their crystalline forms. However, when they are combined with water and other food ingredients and then exposed to a variety of unit operations, there is potential to solidify these initially crystalline ingredients in the amorphous state. Amorphous solids are generally less chemically and physically stable than their crystalline counterparts. To ensure nutrient delivery to the consumer and fulfill labeling laws, deterioration of nutrients due to unintentional amorphization is undesirable. Additionally, the potential for recrystallization of an amorphous ingredient may alter texture and redistribute water. Hence, solid state form is a critical factor dictating the stability of food formulations. Building on earlier work from my M.S. degree that demonstrated thiamine chloride hydrochloride could solidify in the amorphous state in the presence of a variety of polymers (Arioglu-Tuncil et al., 2017), a major goal of this study was to develop a comprehensive understanding of the physical and chemical stability of amorphous forms of two thiamine salts, thiamine chloride hydrochloride (TClHCl) and thiamine mononitrate (TMN), in comparison to their crystalline counterparts and each other. The objectives for this part of the work were to investigate amorphization/recrystallization tendencies of TMN and TClHCl in solid dispersions, as well as chemical stability of thiamine in the solid dispersions to understand the impact of vitamin form, physical state (amorphous vs. crystalline), polymer type and features (Tg, hygroscopicity, and ability for intermolecular interactions), storage conditions, proportion of vitamin to polymer,and pre-lyophilized solution pHs on thiamine degradation and the physical stability of dispersions. Thiamine degraded more when in the amorphous form compared to in the crystalline state. Additionally, polymer type and vitamin proportion influenced thiamine degradation, where thiamine degraded more when it was present in lower concentrations (in dispersions that had higher Tgs), and it was chemically more stable when a polymer with greater intermolecular interactions with the vitamin was used. As storage RH increased, variably hygroscopicities of the polymers resulted in different thiamine degradation rates. The pre-lyophilization pHs of the solutions had a significant impact on thiamine stability in the solid dispersions. Similar to thiamine salts, citric acid is a commonly used food ingredient with a high crystallization tendency. Following similar experimental designs for documenting the recrystallization tendencies of citric acid in amorphous solid dispersions to those used in the thiamine studies, hydrogen bonding and/or ionic interactions between polymer and citric acid were found to be the main stabilizing factor for delaying recrystallization, more than polymer Tg and hygroscopicity. The findings of this dissertation provide a powerful prediction approach to physically and chemically stabilize the small compounds in the complex food matrices for the production of high quality food products and ensuring nutrient delivery to target populations.<br>
130

A novel approach for controlling foodborne pathogens using modified atmosphere and Lactobacillus reuteri DPC16 : a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Food Technology at Massey University, Albany, New Zealand

Lu, Guangjin January 2007 (has links)
The current trend of increasing demand for minimally processed food requires more effective preservation technologies than are presently used. In this study, an investigation has been made into a novel strategy to control some common foodborne pathogens, and therefore, to provide an alternative means for enhancing the safety and extending the shelf lives of food products. Modified atmosphere is able to extend the shelf life of seafood and meat products. In this study, a simulated controlled atmosphere (CA) broth system was used to investigate the potential of a modified atmosphere rich in CO2 at a concentration of 40%, supplemented with N2, to control common foodborne pathogens, such as Listeria monocytogenes, Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, Staphylococcus aureus and Vibrio parahaemolyticus. Controlled atmosphere significantly reduced the exponential growth rates of all tested pathogens, while the effects on other growth parameters (eg. lag phase duration and maximum population density) depended on the individual species and the specific growth conditions. The CA significantly extended the lag phase durations of S. aureus and V. parahaemolyticus at 20 degrees C at both pH 6.3 and 6.8, and that of L. monocytogenes at both 7 degrees C and 20 degrees C, and at both pH 6.3 and 6.8. The CA also significantly lowered the maximum population densities of S. aureus and V. parahaemolyticus at 20 degrees C, at pH 6.3 and 6.8, S. Typhimurium at pH 6.8, and L. monocytogenes at pH 6.3 and 7 degrees C. E. coli O157:H7 and S. Typhimurium were more resistant to the inhibitory effect of the CA, while S. aureus and V. parahaemolyticus were most sensitive. The inhibitory effect of CA was due mainly to the extensions of the lag phase duration and the reduction of the exponential growth rates of the test pathogens. This study confirms other studies that CA as a means for food preservation provides potential to control foodborne pathogens and therefore enhance the safety of a food product. The use of lactic acid bacteria (LAB) in controlling spoilage microorganisms and pathogens in foods has been a popular research theme worldwide. In this study, the antimicrobial effects of 18 lactic acid bacteria strains were evaluated in vitro, with emphasis on the most effective strain, the newly characterised Lactobacillus reuteri DPC16. The results demonstrated antagonistic effects of many strains against L. monocytogenes, E. coli O157:H7, S. Typhimurium and S. aureus. L. reuteri DPC16 showed the strongest antimicrobial activity against the tested pathogens including both Gram-positive and Gram-negative bacteria. Co-cultivation of L. reuteri DPC16, and co-incubation of its spent culture supernatant (DPC16-SCS), with the pathogens have demonstrated that the antimicrobial effect is bactericidal and valid at pH 4 - 6.5 and at a temperature as low as 10 degrees C. Further characterisation of the antimicrobial effect of L. reuteri DPC16 showed it to be mainly due to the presence of reuterin (ß-hydroxypropionaldehyde), although lactic acid may have also played a role. These characteristics of L. reuteri DPC16 and its metabolite reuterin make it an unique and potent candidate as a biopreservative to control both Gram-positive and Gram-negative bacteria in foods. The combination of L. reuteri DPC16 and CA was assessed for its inhibitory effect on L. monocytogenes using DPC16-SCS and the fermentative supernatant of L. reuteri DPC16 from a glycerol-water solution (DPC16-GFS). The results showed that both of these supernatants, at 25 AU/mL, in combination with CA (60% CO2:40% N2) had a combined inhibitory effect on L. monocytogenes which could not be achieved by any one of the individual factors alone. Analysis of the levels of expression of some stress response genes of L. monocytogenes, after growth in the presence of L. reuteri DPC16 supernatant and/or CA, showed that the expression of some genes was affected including genes betL, gbuA and opuCA responsible for osmosis adaptation and genes gadA, gadB and gadC responsible for acid tolerance. Induction of gbuA, gadB and gadC by the culture supernatant suggests activation of osmotic and acid adaptation and that these genes play a major role in the culture supernatant-induced stresses. An investigation was also carried out to determine if the changes in gene expression conferred a cross-protection to heat. The result showed that the survival of L. monocytogenes grown in the presence of the culture supernatant and CA was significantly increased after exposure to heat treatment at 56oC, suggesting that a cross-protection to thermal stress had been induced. Based on these findings it is proposed that a comprehensive novel strategy incorporating both L. reuteri DPC16 or its fermentative products and a modified atmosphere rich in CO2 could be developed to potentially control foodborne pathogens in food products.

Page generated in 0.0755 seconds