• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 9
  • 7
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 117
  • 117
  • 46
  • 28
  • 24
  • 21
  • 16
  • 14
  • 13
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

The Impact of Invasive Salmonids on Ecosystem Functioning in South America's Sub-Antarctic Inland and Marine Waters

Moore, Sabrina 05 1900 (has links)
Invasions from coho salmon were first reported in the Cape Horn Biosphere Reserve (CHBR) in 2019 which is the most southern distribution registered to date. The CHBR is known for its high number of endemic species and unique biodiversity, such as the native fishes Galaxias maculatus and Aplochiton taeniatus. There are now three invasive salmonid species in the rivers of CHBR and are a potential threat to the native fish taxa. Stable isotope and gut content analysis were used to understand resource utilization by both native galaxiid and invasive salmonid taxa, as well as aquatic macroinvertebrates and riparian spiders. The natural laboratory study approach applied to this research, allowed for comparisons of differences within streams that contain conditions in which fish do not occur naturally, to sites in which high densities of invasive salmonid exist. Analysis of the trophic niche and diet in this study showed the importance of marine resource use by the native galaxiid and coho salmon juveniles supported with elevated δ15N and δ34S ratios. Diet analysis also confirmed there was the highest similarity between the coho salmon juveniles and the native fish. Altered behavior and habitat use was shown through the isotope and diet analysis for the galaxiid in snow melt streams which could be due to the high density of invasive salmonids in these streams. The invasive salmonids were found to impact aquatic macroinvertebrate populations, specifically larger bodied Trichoptera abundance. Aquatic insect emergence was negatively correlated to salmonid densities. The aquatic insect emergence revealed alterations with significantly higher biomass of aquatic insect emergence in upstream sites without invasive fish. Lastly, aquatic insect predator (Hydrobiosidae: Rheochorema sp.) exhibited a suppressed trophic position in rivers with invasive salmonids. An unexpected finding from the study was the refugium stream habitat conditions that has been shown to be important for conserving the native fish in the CHBR. We conclude that the impacts from invasive species are significant enough to disrupt lower trophic levels especially aquatic insects. The altered aquatic emergence and insect behavior have the potential to disrupt food webs and ecosystem functioning in the southernmost protected ecoregion in the world.
62

INTERACTIONS AMONG TOP-DOWN REGULATORS IN A TEMPERATE FOREST FLOOR ECOSYSTEM: EFFECTS ON MACROFAUNA, MESOFAUNA, MICROBES AND LITTER DECAY

Hickerson, Cari-Ann Marie 14 June 2010 (has links)
No description available.
63

ASSESSMENT OF DATA RESOURCES IN THE CONSTRUCTION OF LATE ORDOVICIAN SHALLOW MARINE FOOD WEBS: DATA COMPILATIONS VERSUS MUSEUM COLLECTIONS

Castro, Ian Omar 07 May 2018 (has links)
No description available.
64

Littoral zone structure, energy mobilization and benthic food webs in oligotrophic northern temperate lakes

Devlin, Shawn P. 20 April 2011 (has links)
No description available.
65

Selective predators in complex communities – mechanisms and consequences of benthic fish predation in small temperate streams

Worischka, Susanne 19 June 2015 (has links) (PDF)
The prey consumption by benthivorous fish predators can have profound top-down effects in stream food webs. To analyse this effects in small temperate stream ecosystems, a long-term field experiment was conducted in two streams in South-eastern Germany, Gauernitzbach and Tännichtgrundbach, from 2004 to 2011. The densities of two small-bodied benthivorous fish species, gudgeon (Gobio gobio) and stone loach (Barbatula barbatula), were manipulated following a Before-After-Control-Impact design. The top predator regime affected the benthic community composition of the streams mainly in pools, whereas the total benthic invertebrate biomass was not affected in any mesohabitat. The present work describes a causal analysis of the observed food web effects using additional field analyses and laboratory experiments, with a special focus on the habitat use and foraging behaviour of the fish as top predators. The probably most important of the analysed mechanisms was mesohabitat-specific predation by the fish. Three 24-h field video surveys combined with benthic invertebrate sampling showed that constraints in habitat use, especially for gudgeon, induced a differential predator-prey habitat overlap which resulted in a higher predation risk for the invertebrate prey in pools than in riffles. Another important mechanism was selective predation of both fish species. Their prey selectivity was largely explained by a small number of prey variables being connected to the partly non-visual foraging mode of these benthic predators. Besides the traits body size and feeding type, long-term mean abundance played a central role, small and highly abundant invertebrates, grazers and sediment feeders being preferred by gudgeon and stone loach. The preference for small and abundant prey taxa (chironomids) exceeded purely opportunistic feeding and probably facilitated resource partitioning between the two fish species having very similar diets. In addition to active selectivity, different predator avoidance strategies of the invertebrates analysed in laboratory experiments explained the passive selectivity of the fish predators for certain prey taxa in the streams. This could be shown for two abundant taxa being consumed by the fish predators in very different quantities, Gammarus pulex and Hydropsyche instabilis. These three mechanisms, although probably interacting with several other factors, could explain a large part of the effects the top-down food web manipulation had on the benthic community, especially the observed high degree of mesohabitat and species specificity. Confirming this, quantitative characteristics of predation food webs, for instance the importance of intraguild predation, differed markedly between pool and riffle mesohabitats. From the results of this study it can be concluded that the benthivorous fish affected benthic community structure mainly by mesohabitat-specific and selective predation. A manipulation of this (native) top predator type therefore will probably have such rather subtle but not catastrophic consequences in ecosystems with a high biotic diversity and a rich natural habitat structure and connectivity.
66

Food webs: Realizing biological inspiration for sustainable industrial resource networks

Layton, Astrid C. 07 January 2016 (has links)
This thesis considers the problem of how to design an industrial network to reduce cost, increase efficiency, and reduce environmental burdens. A recent approach is further developed that uses analogies with biological food webs to guide industry design. Studying ecological food webs shows that among the metrics in use, critical quantities of interest for industry design include the internal cycling of energy, the ratio of producers to consumers, and the ratio of efficiency to redundancy in the network. Metrics that are calculated using flow based information are also introduced for use in industry, a significant step forward for bio-inspired network design. A comprehensive data set of proposed, operational, and failed eco-industrial parks is compiled for use with structural food web analyses. A data set of biological food webs is also assembled to calculate sustainable benchmark values used as goals for the industrial designs. This research an essential difficulty in bio-inspired design approaches by quantitatively analyzing components of food web design by reconstructing found relationships from science and engineering 1st principles, specifically using thermodynamic 1st law efficiency. Results from this work have the potential to provide industry-wide cost savings, increase efficiency, and reduce environmental burdens through a reduction in raw material consumption and waste disposal. The results also support the view that financial competitiveness and sustainability need not be mutually exclusive: using food web network patterns embodying both economically and environmentally desirable properties, biologically redesigned industrial networks can ease both environmental and economic burdens.
67

Structure, dynamics, and robustness of ecological networks

Staniczenko, Phillip P. A. January 2011 (has links)
Ecosystems are often made up of interactions between large numbers of species. They are considered complex systems because the behaviour of the system as a whole is not always obvious from the properties of the individual parts. A complex system can be represented by a network: a set of interconnected objects. In the case of ecological networks and food webs, the objects are species and the connections are interactions between species. Many complex systems are dynamic and exhibit intricate time series. Time series analysis has been developed to understand a wide range of natural phenomena. This thesis deals with the structure, dynamics, and robustness of ecological networks, the spatial dynamics of fluctuations in a social system, and the analysis of cardiac time series. Biodiversity on Earth is decreasing largely due to human-induced causes. My work looks at the effect of anthropogenic change on ecological networks. In Chapter Two, I investigate predator adaptation on food-web robustness following species extinctions. I identify a new theoretical category of species that may buffer ecosystems against environmental change. In Chapter Three, I study changes in parasitoid-host (consumer-resource) interaction frequencies between complex and simple environments. I show that the feeding preferences of parasitoid species actively change in response to habitat modification. Ecological networks are embedded in spatially-heterogeneous landscapes. In Chapter Four, I assess the role of geography on population fluctuations in an analogous social system. I demonstrate that fluctuations in the number of venture capital firms registered in cities in the United States of America are consistent with spatial and temporal contagion. Understanding how physiological signals vary through time is of interest to medical practitioners. In Chapter Five, I present a technique for quickly quantifying disorder in high frequency event series. Applying the algorithm to patient cardiac time series provides a rapid way to detect the onset of heart arrhythmia. Increasingly, answers to scientific questions lie at the intersection of traditional disciplines. This thesis applies techniques developed in physics and mathematics to problems in ecology and medicine.
68

Quantifying the effects of biodiversity on food web structure : a stable isotope approach

Perkins, Matthew James January 2013 (has links)
Food web structure is of underlying importance to ecological functions and processes. Whilst it is understood that a range of biotic and abiotic factors affect structure, relatively little is known of the role of biodiversity per se in structuring food webs. In this thesis I utilise novel multi-dimensional estimates of food web structure based on stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) to quantify structural responses to changing community diversity. I additionally investigate methodological aspects of sample preparation and stable isotope quantifications of food chains. Using an arthropod prey-predator system, in chapter 2 I demonstrate that tissue selection and lipid extraction are important methodological procedures for deriving accurate δ15N and δ13C signatures. In chapter 3 I test the utility of δ15N to quantify food chain length, and δ13C to trace primary energy sources through to end consumers. Bayesian resampling of variance in sample means for plant and arthropod food chains produces robust isotopic estimates that match known food chain length well despite some error variance, and estimates of δ13C-range that trace trophic transfers. Chapter 4 represents a change in system from lab to field as I determine δ15N and δ13C signatures for plant and invertebrate species within three grassland communities representing a gradient of biodiversity. Quantifications of community bivariate isotopic space using isotopic metrics revealed that greater taxonomic richness increased both diversity of resource space exploited and overlap in resource space. These results therefore suggest that loss of diversity affected structure through altering relative patterns of niche partitioning in resource exploitation amongst community members. In chapter 5, I additionally find evidence that grassland management mediated changes in food web compartmental structure that were associated with differences in generalist invertebrate predator feeding habits. Taken together, these findings develop and demonstrate the utility of isotopic approaches to quantifying food web structure, and provide evidence of important mechanisms by which biodiversity affects food web structure. I conclude that the preservation of natural food web structure and trophic dynamics are further reasons for halting loss of biodiversity.
69

Interaction rewiring and the rapid turnover of plant-pollinator networks

CaraDonna, Paul J., Petry, William K., Brennan, Ross M., Cunningham, James L., Bronstein, Judith L., Waser, Nickolas M., Sanders, Nathan J. 03 1900 (has links)
Whether species interactions are static or change over time has wide-reaching ecological and evolutionary consequences. However, species interaction networks are typically constructed from temporally aggregated interaction data, thereby implicitly assuming that interactions are fixed. This approach has advanced our understanding of communities, but it obscures the timescale at which interactions form (or dissolve) and the drivers and consequences of such dynamics. We address this knowledge gap by quantifying the within-season turnover of plant-pollinator interactions from weekly censuses across 3years in a subalpine ecosystem. Week-to-week turnover of interactions (1) was high, (2) followed a consistent seasonal progression in all years of study and (3) was dominated by interaction rewiring (the reassembly of interactions among species). Simulation models revealed that species' phenologies and relative abundances constrained both total interaction turnover and rewiring. Our findings reveal the diversity of species interactions that may be missed when the temporal dynamics of networks are ignored.
70

New home, new life: The effect of shifts in the habitat choice of salamander larvae on population performance and their effect on pond invertebrate communities

Reinhardt, Timm 26 June 2017 (has links) (PDF)
Changes of habitats are amongst the main drivers of evolutionary processes. Corresponding shifts in the behaviour and life history traits of species might in turn also alter ecosystem attributes. The reproduction of Western European fire salamanders (Salamandra salamandra), in small pond habitats instead of first order streams, is one example of a recent local adaptation. Since fire salamander larvae are important top-predators in these fish free habitats, their presence likely changes various aspects of ecosystem functioning. Here, it was analysed how the ecological performance of salamander larvae in ponds in the Kottenforst in Western Germany changed in comparison to sympatric stream populations. Further, it was analysed how their presence in ponds influenced key ecosystem attributes such as prey density and diversity and aquatic-terrestrial linkage. To assess the impact of the life cycle shifts in salamanders on the pond functioning, detailed investigations of salamander larvae population dynamics, phenology, and macroinvertebrate community development in ponds were combined with experimental manipulations of the salamander presence. In the first part of this study, the impact of pond presence of fire salamanders in terms of ecosystem functioning focussing on aquatic terrestrial subsidy transfer was calculated. The study could show, that the adaptation of fire salamanders to breed in pools led to strong increases of animal-mediated import of terrestrial matter into the aquatic habitats. The hypothesis about the impact on macroinvertebrate communities derived from these calculations was then tested experimentally. It was shown, that presence of salamander larvae could influence some taxa of macroinvertebrates but they had only limited effects on the food web structure in their aquatic habitats. Yet, a high relevance of the subsidy exchange from aquatic to terrestrial and its high relevance for the predator persistence in the system could again be confirmed. Moreover, it was demonstrated, that the larval behaviour and performance could have a high inter-annual variability as a reaction to contrasting ecosystem constraints in comparison to the stream habitats. A fact that integrally separates the pond ecotype from stream ecotype conspecifics.

Page generated in 0.0381 seconds