• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • Tagged with
  • 10
  • 9
  • 8
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Selective predators in complex communities – mechanisms and consequences of benthic fish predation in small temperate streams

Worischka, Susanne 19 June 2015 (has links) (PDF)
The prey consumption by benthivorous fish predators can have profound top-down effects in stream food webs. To analyse this effects in small temperate stream ecosystems, a long-term field experiment was conducted in two streams in South-eastern Germany, Gauernitzbach and Tännichtgrundbach, from 2004 to 2011. The densities of two small-bodied benthivorous fish species, gudgeon (Gobio gobio) and stone loach (Barbatula barbatula), were manipulated following a Before-After-Control-Impact design. The top predator regime affected the benthic community composition of the streams mainly in pools, whereas the total benthic invertebrate biomass was not affected in any mesohabitat. The present work describes a causal analysis of the observed food web effects using additional field analyses and laboratory experiments, with a special focus on the habitat use and foraging behaviour of the fish as top predators. The probably most important of the analysed mechanisms was mesohabitat-specific predation by the fish. Three 24-h field video surveys combined with benthic invertebrate sampling showed that constraints in habitat use, especially for gudgeon, induced a differential predator-prey habitat overlap which resulted in a higher predation risk for the invertebrate prey in pools than in riffles. Another important mechanism was selective predation of both fish species. Their prey selectivity was largely explained by a small number of prey variables being connected to the partly non-visual foraging mode of these benthic predators. Besides the traits body size and feeding type, long-term mean abundance played a central role, small and highly abundant invertebrates, grazers and sediment feeders being preferred by gudgeon and stone loach. The preference for small and abundant prey taxa (chironomids) exceeded purely opportunistic feeding and probably facilitated resource partitioning between the two fish species having very similar diets. In addition to active selectivity, different predator avoidance strategies of the invertebrates analysed in laboratory experiments explained the passive selectivity of the fish predators for certain prey taxa in the streams. This could be shown for two abundant taxa being consumed by the fish predators in very different quantities, Gammarus pulex and Hydropsyche instabilis. These three mechanisms, although probably interacting with several other factors, could explain a large part of the effects the top-down food web manipulation had on the benthic community, especially the observed high degree of mesohabitat and species specificity. Confirming this, quantitative characteristics of predation food webs, for instance the importance of intraguild predation, differed markedly between pool and riffle mesohabitats. From the results of this study it can be concluded that the benthivorous fish affected benthic community structure mainly by mesohabitat-specific and selective predation. A manipulation of this (native) top predator type therefore will probably have such rather subtle but not catastrophic consequences in ecosystems with a high biotic diversity and a rich natural habitat structure and connectivity.
2

New home, new life: The effect of shifts in the habitat choice of salamander larvae on population performance and their effect on pond invertebrate communities

Reinhardt, Timm 26 June 2017 (has links) (PDF)
Changes of habitats are amongst the main drivers of evolutionary processes. Corresponding shifts in the behaviour and life history traits of species might in turn also alter ecosystem attributes. The reproduction of Western European fire salamanders (Salamandra salamandra), in small pond habitats instead of first order streams, is one example of a recent local adaptation. Since fire salamander larvae are important top-predators in these fish free habitats, their presence likely changes various aspects of ecosystem functioning. Here, it was analysed how the ecological performance of salamander larvae in ponds in the Kottenforst in Western Germany changed in comparison to sympatric stream populations. Further, it was analysed how their presence in ponds influenced key ecosystem attributes such as prey density and diversity and aquatic-terrestrial linkage. To assess the impact of the life cycle shifts in salamanders on the pond functioning, detailed investigations of salamander larvae population dynamics, phenology, and macroinvertebrate community development in ponds were combined with experimental manipulations of the salamander presence. In the first part of this study, the impact of pond presence of fire salamanders in terms of ecosystem functioning focussing on aquatic terrestrial subsidy transfer was calculated. The study could show, that the adaptation of fire salamanders to breed in pools led to strong increases of animal-mediated import of terrestrial matter into the aquatic habitats. The hypothesis about the impact on macroinvertebrate communities derived from these calculations was then tested experimentally. It was shown, that presence of salamander larvae could influence some taxa of macroinvertebrates but they had only limited effects on the food web structure in their aquatic habitats. Yet, a high relevance of the subsidy exchange from aquatic to terrestrial and its high relevance for the predator persistence in the system could again be confirmed. Moreover, it was demonstrated, that the larval behaviour and performance could have a high inter-annual variability as a reaction to contrasting ecosystem constraints in comparison to the stream habitats. A fact that integrally separates the pond ecotype from stream ecotype conspecifics.
3

New home, new life: The effect of shifts in the habitat choice of salamander larvae on population performance and their effect on pond invertebrate communities

Reinhardt, Timm 23 October 2014 (has links)
Changes of habitats are amongst the main drivers of evolutionary processes. Corresponding shifts in the behaviour and life history traits of species might in turn also alter ecosystem attributes. The reproduction of Western European fire salamanders (Salamandra salamandra), in small pond habitats instead of first order streams, is one example of a recent local adaptation. Since fire salamander larvae are important top-predators in these fish free habitats, their presence likely changes various aspects of ecosystem functioning. Here, it was analysed how the ecological performance of salamander larvae in ponds in the Kottenforst in Western Germany changed in comparison to sympatric stream populations. Further, it was analysed how their presence in ponds influenced key ecosystem attributes such as prey density and diversity and aquatic-terrestrial linkage. To assess the impact of the life cycle shifts in salamanders on the pond functioning, detailed investigations of salamander larvae population dynamics, phenology, and macroinvertebrate community development in ponds were combined with experimental manipulations of the salamander presence. In the first part of this study, the impact of pond presence of fire salamanders in terms of ecosystem functioning focussing on aquatic terrestrial subsidy transfer was calculated. The study could show, that the adaptation of fire salamanders to breed in pools led to strong increases of animal-mediated import of terrestrial matter into the aquatic habitats. The hypothesis about the impact on macroinvertebrate communities derived from these calculations was then tested experimentally. It was shown, that presence of salamander larvae could influence some taxa of macroinvertebrates but they had only limited effects on the food web structure in their aquatic habitats. Yet, a high relevance of the subsidy exchange from aquatic to terrestrial and its high relevance for the predator persistence in the system could again be confirmed. Moreover, it was demonstrated, that the larval behaviour and performance could have a high inter-annual variability as a reaction to contrasting ecosystem constraints in comparison to the stream habitats. A fact that integrally separates the pond ecotype from stream ecotype conspecifics.
4

Selective predators in complex communities – mechanisms and consequences of benthic fish predation in small temperate streams

Worischka, Susanne 17 April 2015 (has links)
The prey consumption by benthivorous fish predators can have profound top-down effects in stream food webs. To analyse this effects in small temperate stream ecosystems, a long-term field experiment was conducted in two streams in South-eastern Germany, Gauernitzbach and Tännichtgrundbach, from 2004 to 2011. The densities of two small-bodied benthivorous fish species, gudgeon (Gobio gobio) and stone loach (Barbatula barbatula), were manipulated following a Before-After-Control-Impact design. The top predator regime affected the benthic community composition of the streams mainly in pools, whereas the total benthic invertebrate biomass was not affected in any mesohabitat. The present work describes a causal analysis of the observed food web effects using additional field analyses and laboratory experiments, with a special focus on the habitat use and foraging behaviour of the fish as top predators. The probably most important of the analysed mechanisms was mesohabitat-specific predation by the fish. Three 24-h field video surveys combined with benthic invertebrate sampling showed that constraints in habitat use, especially for gudgeon, induced a differential predator-prey habitat overlap which resulted in a higher predation risk for the invertebrate prey in pools than in riffles. Another important mechanism was selective predation of both fish species. Their prey selectivity was largely explained by a small number of prey variables being connected to the partly non-visual foraging mode of these benthic predators. Besides the traits body size and feeding type, long-term mean abundance played a central role, small and highly abundant invertebrates, grazers and sediment feeders being preferred by gudgeon and stone loach. The preference for small and abundant prey taxa (chironomids) exceeded purely opportunistic feeding and probably facilitated resource partitioning between the two fish species having very similar diets. In addition to active selectivity, different predator avoidance strategies of the invertebrates analysed in laboratory experiments explained the passive selectivity of the fish predators for certain prey taxa in the streams. This could be shown for two abundant taxa being consumed by the fish predators in very different quantities, Gammarus pulex and Hydropsyche instabilis. These three mechanisms, although probably interacting with several other factors, could explain a large part of the effects the top-down food web manipulation had on the benthic community, especially the observed high degree of mesohabitat and species specificity. Confirming this, quantitative characteristics of predation food webs, for instance the importance of intraguild predation, differed markedly between pool and riffle mesohabitats. From the results of this study it can be concluded that the benthivorous fish affected benthic community structure mainly by mesohabitat-specific and selective predation. A manipulation of this (native) top predator type therefore will probably have such rather subtle but not catastrophic consequences in ecosystems with a high biotic diversity and a rich natural habitat structure and connectivity.
5

Human impacts on the structure and ecological function of littoral macroinvertebrate communities in lakes

Brauns, Mario 15 July 2009 (has links)
Das litorale Makrozoobenthos ist eine bedeutende biotische Komponente in Seen und trägt substantiell zur Biodiversität und Funktion von Seeökosystemen bei. Allerdings unterliegt das Litoral zunehmenden anthropogenen Nutzungen, deren ökologische Auswirkungen jedoch kaum quantifiziert wurden. In dieser Doktorarbeit wurde untersucht, welche Bedeutung maßgebliche Umweltfaktoren auf die Zusammensetzung des litoralen Makrozoobenthos haben, und wie sich anthropogene Nutzungen auf die Zusammensetzung und Funktion des Makrozoobenthos auswirken. Die Zusammensetzung des Makrozoobenthos wurde durch die Uferstruktur, Trophie und das hydrodynamische Regime bestimmt. Die faunistische Ähnlichkeit zwischen Habitaten war jedoch signifikant geringer als zwischen Trophiestufen, so dass die Uferstruktur, und nicht die Trophie, einen größeren Einfluss auf das Makrozoobenthos hat. Strukturelle Degradation führte zu einer Reduktion der Habitatheterogenität, was eine signifikante Verringerung der Diversität und eine signifikant veränderte Artenzusammensetzung verursachte. Infolgedessen war die Komplexität der Makrozoobenthos-Nahrungsnetze an degradierten Ufern signifikant geringer als an natürlichen Ufern. Erhöhte Wasserstandsschwankungen führten zum Ausfall von Wurzelhabitaten und der damit assoziierten Makrozoobenthos-Gemeinschaft. Schiffsinduzierter Wellenschlag führte zur Verdriftung des Makrozoobenthos von ihren Habitaten bereits bei geringen Sohlschubspannungen. Die Effekte von Wasserstandsschwankungen und schiffsinduziertem Wellenschlag wurden jedoch durch Habitate mit hoher struktureller Komplexität verringert. Mit dieser Doktorarbeit konnte ich ein mechanistisches Verständnis darüber erarbeiten, wie anthropogene Nutzungen die Wirkungsbeziehungen zwischen Umweltfaktoren und Artengemeinschaften verändern und welche ökologischen Auswirkungen dies hat. Diese Kenntnisse können als wissenschaftliche Basis zur Bewertung von anthropogenen Beeinträchtigungen des Litorals dienen. / Littoral macroinvertebrates are an important biotic component of lakes by contributing substantially to the biodiversity and functioning of lake ecosystems. Humans alter the littoral and riparian areas for various purposes, but the resulting ecological impacts on littoral macroinvertebrates have not been quantified. In this thesis, I investigated the significance of key environmental factors for littoral macroinvertebrate communities and how human alterations of these environmental factors impact the structure and function of macroinvertebrate communities. Macroinvertebrate community composition was significantly related to littoral structure, trophic state and the hydrodynamic regime. The significantly higher compositional dissimilarities among habitats than among trophic state suggested that littoral structure was the more important driver of community composition. Structural degradation caused a significant reduction of habitat heterogeneity and resulted in a significant reduction of species diversity and a significant altered community composition. This caused a significant reduction of macroinvertebrate food web complexity and substantial alterations of the trophic base of the food webs. Climate-change induced water level fluctuations resulted in the loss of root habitats and the specific community associated with this habitat. Ship-induced waves had substantial direct effects, since macroinvertebrates were detached from their habitats by waves even at moderate shear stress levels. However, the impacts of water level fluctuations and ship-induced waves were mitigated by the presence of habitats with high structural complexities. This thesis provided a mechanistic understanding of how human activities alter relationships between environmental factors and biotic communities. This knowledge can be used to develop scientifically sound approaches to assess the persistent human impacts on lake ecosystems.
6

Topology and stability of complex foodwebs / Topologie und Stabilität komplexer Nahrungsnetze

Riede, Jens O. 17 February 2012 (has links)
No description available.
7

Implications of eigenvector localization for dynamics on complex networks

Aufderheide, Helge E. 19 September 2014 (has links) (PDF)
In large and complex systems, failures can have dramatic consequences, such as black-outs, pandemics or the loss of entire classes of an ecosystem. Nevertheless, it is a centuries-old intuition that by using networks to capture the core of the complexity of such systems, one might understand in which part of a system a phenomenon originates. I investigate this intuition using spectral methods to decouple the dynamics of complex systems near stationary states into independent dynamical modes. In this description, phenomena are tied to a specific part of a system through localized eigenvectors which have large amplitudes only on a few nodes of the system's network. Studying the occurrence of localized eigenvectors, I find that such localization occurs exactly for a few small network structures, and approximately for the dynamical modes associated with the most prominent failures in complex systems. My findings confirm that understanding the functioning of complex systems generally requires to treat them as complex entities, rather than collections of interwoven small parts. Exceptions to this are only few structures carrying exact localization, whose functioning is tied to the meso-scale, between the size of individual elements and the size of the global network. However, while understanding the functioning of a complex system is hampered by the necessary global analysis, the prominent failures, due to their localization, allow an understanding on a manageable local scale. Intriguingly, food webs might exploit this localization of failures to stabilize by causing the break-off of small problematic parts, whereas typical attempts to optimize technological systems for stability lead to delocalization and large-scale failures. Thus, this thesis provides insights into the interplay of complexity and localization, which is paramount to ascertain the functioning of the ever-growing networks on which we humans depend.
8

Compartmentalization and energy channels within the soil animal food web investigated by stable isotope (13C and 15N) and fatty acid analyses / Kompartimentierung und Energie-Kanäle im Bodentier-Nahrungsnetz untersucht mittels Isotopen- und Fettsäuremuster-Analyse

Maraun, Melanie Mira 09 February 2012 (has links)
No description available.
9

Implications of eigenvector localization for dynamics on complex networks

Aufderheide, Helge E. 08 September 2014 (has links)
In large and complex systems, failures can have dramatic consequences, such as black-outs, pandemics or the loss of entire classes of an ecosystem. Nevertheless, it is a centuries-old intuition that by using networks to capture the core of the complexity of such systems, one might understand in which part of a system a phenomenon originates. I investigate this intuition using spectral methods to decouple the dynamics of complex systems near stationary states into independent dynamical modes. In this description, phenomena are tied to a specific part of a system through localized eigenvectors which have large amplitudes only on a few nodes of the system's network. Studying the occurrence of localized eigenvectors, I find that such localization occurs exactly for a few small network structures, and approximately for the dynamical modes associated with the most prominent failures in complex systems. My findings confirm that understanding the functioning of complex systems generally requires to treat them as complex entities, rather than collections of interwoven small parts. Exceptions to this are only few structures carrying exact localization, whose functioning is tied to the meso-scale, between the size of individual elements and the size of the global network. However, while understanding the functioning of a complex system is hampered by the necessary global analysis, the prominent failures, due to their localization, allow an understanding on a manageable local scale. Intriguingly, food webs might exploit this localization of failures to stabilize by causing the break-off of small problematic parts, whereas typical attempts to optimize technological systems for stability lead to delocalization and large-scale failures. Thus, this thesis provides insights into the interplay of complexity and localization, which is paramount to ascertain the functioning of the ever-growing networks on which we humans depend.:1 Introduction 2 Concepts and Tools 2.1 Networks 2.2 Food webs 2.3 Dynamics on networks 2.4 Steady state operating modes 2.5 Bifurcations affecting operating modes 2.6 Dynamical modes 2.7 Generalized models for food webs 3 Perturbation Impact 3.1 Impact of perturbations on food webs 3.2 Examples 3.3 Impact formulation with dynamical modes 3.4 Influence and sensitivity of species 3.5 Localized dynamical modes 3.6 Iterative parameter estimation 3.7 Most important parameters and species 3.8 Discussion 4 Exact Localization 4.1 Graph symmetries 4.2 Localized dynamics on symmetries 4.3 Exactly localized dynamics 4.4 Symmetry reduction in networks 4.5 Application to food webs 4.6 Localization on asymmetric structures 4.7 Nearly-exact localization 4.8 Other systems 4.9 Discussion 5 Approximate Localization 5.1 Spread of a dynamical mode 5.2 Examples for localized instabilities 5.3 Localization of extreme eigenvalues 5.4 Dependence on the system size 5.5 Localization in the model of R. May 5.6 Finding motifs that carry localization 5.7 (Self-)stabilization of food webs 5.8 Repairing localized instabilities 5.9 Discussion 6 Conclusions Acknowledgments Appendix A Parametrization of the Gatun Lake food web B The Master Stability Function approach C Approximate localization on larger structures Bibliography
10

Landscape context of bee, wasp and parasitoid diversity: grass-strip corridors, fallows and food webs / Bienen- Wespen- und Parasitoidendiversität im Landschaftskontext: Randstreifen-Korridore, Brachen und Nahrungsnetze

Krewenka, Kristin Marie 21 July 2011 (has links)
No description available.

Page generated in 0.0619 seconds