• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 7
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spectral graph drawing

Puppe, Thomas. January 2005 (has links)
Konstanz, Univ., Diplomarb., 2005.
2

Two-sided Eigenvalue Algorithms for Modal Approximation

Kürschner, Patrick 22 July 2010 (has links) (PDF)
Large scale linear time invariant (LTI) systems arise in many physical and technical fields. An approximation, e.g. with model order reduction techniques, of this large systems is crucial for a cost efficient simulation. In this thesis we focus on a model order reduction method based on modal approximation, where the LTI system is projected onto the left and right eigenspaces corresponding to the dominant poles of the system. These dominant poles are related to the most dominant parts of the residue expansion of the transfer function and usually form a small subset of the eigenvalues of the system matrices. The computation of this dominant poles can be a formidable task, since they can lie anywhere inside the spectrum and the corresponding left eigenvectors have to be approximated as well. We investigate the subspace accelerated dominant pole algorithm and the two-sided and alternating Jacobi-Davidson method for this modal truncation approach. These methods can be seen as subspace accelerated versions of certain Rayleigh quotient iterations. Several strategies that admit an efficient computation of several dominant poles of single-input single-output LTI systems are examined. Since dominant poles can lie in the interior of the spectrum, we discuss also harmonic subspace extraction approaches which might improve the convergence of the methods. Extentions of the modal approximation approach and the applied eigenvalue solvers to multi-input multi-output are also examined. The discussed eigenvalue algorithms and the model order reduction approach will be tested for several practically relevant LTI systems.
3

Two-sided Eigenvalue Algorithms for Modal Approximation

Kürschner, Patrick 22 July 2010 (has links)
Large scale linear time invariant (LTI) systems arise in many physical and technical fields. An approximation, e.g. with model order reduction techniques, of this large systems is crucial for a cost efficient simulation. In this thesis we focus on a model order reduction method based on modal approximation, where the LTI system is projected onto the left and right eigenspaces corresponding to the dominant poles of the system. These dominant poles are related to the most dominant parts of the residue expansion of the transfer function and usually form a small subset of the eigenvalues of the system matrices. The computation of this dominant poles can be a formidable task, since they can lie anywhere inside the spectrum and the corresponding left eigenvectors have to be approximated as well. We investigate the subspace accelerated dominant pole algorithm and the two-sided and alternating Jacobi-Davidson method for this modal truncation approach. These methods can be seen as subspace accelerated versions of certain Rayleigh quotient iterations. Several strategies that admit an efficient computation of several dominant poles of single-input single-output LTI systems are examined. Since dominant poles can lie in the interior of the spectrum, we discuss also harmonic subspace extraction approaches which might improve the convergence of the methods. Extentions of the modal approximation approach and the applied eigenvalue solvers to multi-input multi-output are also examined. The discussed eigenvalue algorithms and the model order reduction approach will be tested for several practically relevant LTI systems.
4

Optimizing Extremal Eigenvalues of Weighted Graph Laplacians and Associated Graph Realizations

Reiß, Susanna 09 August 2012 (has links) (PDF)
This thesis deals with optimizing extremal eigenvalues of weighted graph Laplacian matrices. In general, the Laplacian matrix of a (weighted) graph is of particular importance in spectral graph theory and combinatorial optimization (e.g., graph partition like max-cut and graph bipartition). Especially the pioneering work of M. Fiedler investigates extremal eigenvalues of weighted graph Laplacians and provides close connections to the node- and edge-connectivity of a graph. Motivated by Fiedler, Göring et al. were interested in further connections between structural properties of the graph and the eigenspace of the second smallest eigenvalue of weighted graph Laplacians using a semidefinite optimization approach. By redistributing the edge weights of a graph, the following three optimization problems are studied in this thesis: maximizing the second smallest eigenvalue (based on the mentioned work of Göring et al.), minimizing the maximum eigenvalue and minimizing the difference of maximum and second smallest eigenvalue of the weighted Laplacian. In all three problems a semidefinite optimization formulation allows to interpret the corresponding semidefinite dual as a graph realization problem. That is, to each node of the graph a vector in the Euclidean space is assigned, fulfilling some constraints depending on the considered problem. Optimal realizations are investigated and connections to the eigenspaces of corresponding optimized eigenvalues are established. Furthermore, optimal realizations are closely linked to the separator structure of the graph. Depending on this structure, on the one hand folding properties of optimal realizations are characterized and on the other hand the existence of optimal realizations of bounded dimension is proven. The general bounds depend on the tree-width of the graph. In the case of minimizing the maximum eigenvalue, an important family of graphs are bipartite graphs, as an optimal one-dimensional realization may be constructed. Taking the symmetry of the graph into account, a particular optimal edge weighting exists. Considering the coupled problem, i.e., minimizing the difference of maximum and second smallest eigenvalue and the single problems, i.e., minimizing the maximum and maximizing the second smallest eigenvalue, connections between the feasible (optimal) sets are established.
5

Implications of eigenvector localization for dynamics on complex networks

Aufderheide, Helge E. 19 September 2014 (has links) (PDF)
In large and complex systems, failures can have dramatic consequences, such as black-outs, pandemics or the loss of entire classes of an ecosystem. Nevertheless, it is a centuries-old intuition that by using networks to capture the core of the complexity of such systems, one might understand in which part of a system a phenomenon originates. I investigate this intuition using spectral methods to decouple the dynamics of complex systems near stationary states into independent dynamical modes. In this description, phenomena are tied to a specific part of a system through localized eigenvectors which have large amplitudes only on a few nodes of the system's network. Studying the occurrence of localized eigenvectors, I find that such localization occurs exactly for a few small network structures, and approximately for the dynamical modes associated with the most prominent failures in complex systems. My findings confirm that understanding the functioning of complex systems generally requires to treat them as complex entities, rather than collections of interwoven small parts. Exceptions to this are only few structures carrying exact localization, whose functioning is tied to the meso-scale, between the size of individual elements and the size of the global network. However, while understanding the functioning of a complex system is hampered by the necessary global analysis, the prominent failures, due to their localization, allow an understanding on a manageable local scale. Intriguingly, food webs might exploit this localization of failures to stabilize by causing the break-off of small problematic parts, whereas typical attempts to optimize technological systems for stability lead to delocalization and large-scale failures. Thus, this thesis provides insights into the interplay of complexity and localization, which is paramount to ascertain the functioning of the ever-growing networks on which we humans depend.
6

Optimizing Extremal Eigenvalues of Weighted Graph Laplacians and Associated Graph Realizations

Reiß, Susanna 17 July 2012 (has links)
This thesis deals with optimizing extremal eigenvalues of weighted graph Laplacian matrices. In general, the Laplacian matrix of a (weighted) graph is of particular importance in spectral graph theory and combinatorial optimization (e.g., graph partition like max-cut and graph bipartition). Especially the pioneering work of M. Fiedler investigates extremal eigenvalues of weighted graph Laplacians and provides close connections to the node- and edge-connectivity of a graph. Motivated by Fiedler, Göring et al. were interested in further connections between structural properties of the graph and the eigenspace of the second smallest eigenvalue of weighted graph Laplacians using a semidefinite optimization approach. By redistributing the edge weights of a graph, the following three optimization problems are studied in this thesis: maximizing the second smallest eigenvalue (based on the mentioned work of Göring et al.), minimizing the maximum eigenvalue and minimizing the difference of maximum and second smallest eigenvalue of the weighted Laplacian. In all three problems a semidefinite optimization formulation allows to interpret the corresponding semidefinite dual as a graph realization problem. That is, to each node of the graph a vector in the Euclidean space is assigned, fulfilling some constraints depending on the considered problem. Optimal realizations are investigated and connections to the eigenspaces of corresponding optimized eigenvalues are established. Furthermore, optimal realizations are closely linked to the separator structure of the graph. Depending on this structure, on the one hand folding properties of optimal realizations are characterized and on the other hand the existence of optimal realizations of bounded dimension is proven. The general bounds depend on the tree-width of the graph. In the case of minimizing the maximum eigenvalue, an important family of graphs are bipartite graphs, as an optimal one-dimensional realization may be constructed. Taking the symmetry of the graph into account, a particular optimal edge weighting exists. Considering the coupled problem, i.e., minimizing the difference of maximum and second smallest eigenvalue and the single problems, i.e., minimizing the maximum and maximizing the second smallest eigenvalue, connections between the feasible (optimal) sets are established.
7

Implications of eigenvector localization for dynamics on complex networks

Aufderheide, Helge E. 08 September 2014 (has links)
In large and complex systems, failures can have dramatic consequences, such as black-outs, pandemics or the loss of entire classes of an ecosystem. Nevertheless, it is a centuries-old intuition that by using networks to capture the core of the complexity of such systems, one might understand in which part of a system a phenomenon originates. I investigate this intuition using spectral methods to decouple the dynamics of complex systems near stationary states into independent dynamical modes. In this description, phenomena are tied to a specific part of a system through localized eigenvectors which have large amplitudes only on a few nodes of the system's network. Studying the occurrence of localized eigenvectors, I find that such localization occurs exactly for a few small network structures, and approximately for the dynamical modes associated with the most prominent failures in complex systems. My findings confirm that understanding the functioning of complex systems generally requires to treat them as complex entities, rather than collections of interwoven small parts. Exceptions to this are only few structures carrying exact localization, whose functioning is tied to the meso-scale, between the size of individual elements and the size of the global network. However, while understanding the functioning of a complex system is hampered by the necessary global analysis, the prominent failures, due to their localization, allow an understanding on a manageable local scale. Intriguingly, food webs might exploit this localization of failures to stabilize by causing the break-off of small problematic parts, whereas typical attempts to optimize technological systems for stability lead to delocalization and large-scale failures. Thus, this thesis provides insights into the interplay of complexity and localization, which is paramount to ascertain the functioning of the ever-growing networks on which we humans depend.:1 Introduction 2 Concepts and Tools 2.1 Networks 2.2 Food webs 2.3 Dynamics on networks 2.4 Steady state operating modes 2.5 Bifurcations affecting operating modes 2.6 Dynamical modes 2.7 Generalized models for food webs 3 Perturbation Impact 3.1 Impact of perturbations on food webs 3.2 Examples 3.3 Impact formulation with dynamical modes 3.4 Influence and sensitivity of species 3.5 Localized dynamical modes 3.6 Iterative parameter estimation 3.7 Most important parameters and species 3.8 Discussion 4 Exact Localization 4.1 Graph symmetries 4.2 Localized dynamics on symmetries 4.3 Exactly localized dynamics 4.4 Symmetry reduction in networks 4.5 Application to food webs 4.6 Localization on asymmetric structures 4.7 Nearly-exact localization 4.8 Other systems 4.9 Discussion 5 Approximate Localization 5.1 Spread of a dynamical mode 5.2 Examples for localized instabilities 5.3 Localization of extreme eigenvalues 5.4 Dependence on the system size 5.5 Localization in the model of R. May 5.6 Finding motifs that carry localization 5.7 (Self-)stabilization of food webs 5.8 Repairing localized instabilities 5.9 Discussion 6 Conclusions Acknowledgments Appendix A Parametrization of the Gatun Lake food web B The Master Stability Function approach C Approximate localization on larger structures Bibliography

Page generated in 0.0503 seconds