• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Two-sided Eigenvalue Algorithms for Modal Approximation

Kürschner, Patrick 22 July 2010 (has links) (PDF)
Large scale linear time invariant (LTI) systems arise in many physical and technical fields. An approximation, e.g. with model order reduction techniques, of this large systems is crucial for a cost efficient simulation. In this thesis we focus on a model order reduction method based on modal approximation, where the LTI system is projected onto the left and right eigenspaces corresponding to the dominant poles of the system. These dominant poles are related to the most dominant parts of the residue expansion of the transfer function and usually form a small subset of the eigenvalues of the system matrices. The computation of this dominant poles can be a formidable task, since they can lie anywhere inside the spectrum and the corresponding left eigenvectors have to be approximated as well. We investigate the subspace accelerated dominant pole algorithm and the two-sided and alternating Jacobi-Davidson method for this modal truncation approach. These methods can be seen as subspace accelerated versions of certain Rayleigh quotient iterations. Several strategies that admit an efficient computation of several dominant poles of single-input single-output LTI systems are examined. Since dominant poles can lie in the interior of the spectrum, we discuss also harmonic subspace extraction approaches which might improve the convergence of the methods. Extentions of the modal approximation approach and the applied eigenvalue solvers to multi-input multi-output are also examined. The discussed eigenvalue algorithms and the model order reduction approach will be tested for several practically relevant LTI systems.
2

Two-sided Eigenvalue Algorithms for Modal Approximation

Kürschner, Patrick 22 July 2010 (has links)
Large scale linear time invariant (LTI) systems arise in many physical and technical fields. An approximation, e.g. with model order reduction techniques, of this large systems is crucial for a cost efficient simulation. In this thesis we focus on a model order reduction method based on modal approximation, where the LTI system is projected onto the left and right eigenspaces corresponding to the dominant poles of the system. These dominant poles are related to the most dominant parts of the residue expansion of the transfer function and usually form a small subset of the eigenvalues of the system matrices. The computation of this dominant poles can be a formidable task, since they can lie anywhere inside the spectrum and the corresponding left eigenvectors have to be approximated as well. We investigate the subspace accelerated dominant pole algorithm and the two-sided and alternating Jacobi-Davidson method for this modal truncation approach. These methods can be seen as subspace accelerated versions of certain Rayleigh quotient iterations. Several strategies that admit an efficient computation of several dominant poles of single-input single-output LTI systems are examined. Since dominant poles can lie in the interior of the spectrum, we discuss also harmonic subspace extraction approaches which might improve the convergence of the methods. Extentions of the modal approximation approach and the applied eigenvalue solvers to multi-input multi-output are also examined. The discussed eigenvalue algorithms and the model order reduction approach will be tested for several practically relevant LTI systems.
3

Disorder-induced metal-insulator transition in anisotropic systems

Milde, Frank 17 July 2000 (has links) (PDF)
Untersucht wird der Auswirkung von Anisotropie auf den unordnungsinduzierten Metall-Isolator-Übergang (MIÜ) im Rahmen des dreidimensionalen Anderson-Modells der Lokalisierung für (schwach) gekoppelte Ebenen bzw. Ketten. Mittels numerischer Verfahren (Lanczos- und Transfer-Matrix-Methode) werden Eigenwerte und -vektoren bzw. die Lokalisierungslänge berechnet. Zur Bestimmung des kritischen Exponenten dieses Phasenüberganges 2. Ordnung wird ein allgemeiner Skalenansatz verwendet, der auch den Einfluss einer irrelevanten Skalenvariablen und Nichtlinearitäten berücksichtigt. Ein Kapitel untersucht die verwendeten numerischen Verfahren, verschiedene Methoden werden verglichen und die Portierbarkeit zu Parallelrechnern diskutiert. Der MIÜ wird mit zwei unabhängigen Methoden charakterisiert: Eigenwertstatistik und Transfer-Matrix-Methode. Die Systemgrößenunabhängigkeit der betrachteten Größen am Phasenübergang wird benutzt um den MIÜ zu identifizieren. Sie resultiert aus der Multifraktalität der kritischen Eigenzustände, die für den isotropen Fall bis zu einer Systemgröße von 111^3 Gitterplätzen gezeigt wird. Es stellt sich heraus, daß der MIÜ auch bei sehr starker Anisotropie existiert und bereits bei geringerer Potentialunordnung als im isotropen Fall auftritt. Für den Fall sehr schwach gekoppelter Ebenen wird gezeigt, daß der kritische Exponent mit dem des isotropen Falles übereinstimmt und damit die übliche Einteilung in Universalitätsklassen bestätigt.
4

Disorder-induced metal-insulator transition in anisotropic systems

Milde, Frank 13 July 2000 (has links)
Untersucht wird der Auswirkung von Anisotropie auf den unordnungsinduzierten Metall-Isolator-Übergang (MIÜ) im Rahmen des dreidimensionalen Anderson-Modells der Lokalisierung für (schwach) gekoppelte Ebenen bzw. Ketten. Mittels numerischer Verfahren (Lanczos- und Transfer-Matrix-Methode) werden Eigenwerte und -vektoren bzw. die Lokalisierungslänge berechnet. Zur Bestimmung des kritischen Exponenten dieses Phasenüberganges 2. Ordnung wird ein allgemeiner Skalenansatz verwendet, der auch den Einfluss einer irrelevanten Skalenvariablen und Nichtlinearitäten berücksichtigt. Ein Kapitel untersucht die verwendeten numerischen Verfahren, verschiedene Methoden werden verglichen und die Portierbarkeit zu Parallelrechnern diskutiert. Der MIÜ wird mit zwei unabhängigen Methoden charakterisiert: Eigenwertstatistik und Transfer-Matrix-Methode. Die Systemgrößenunabhängigkeit der betrachteten Größen am Phasenübergang wird benutzt um den MIÜ zu identifizieren. Sie resultiert aus der Multifraktalität der kritischen Eigenzustände, die für den isotropen Fall bis zu einer Systemgröße von 111^3 Gitterplätzen gezeigt wird. Es stellt sich heraus, daß der MIÜ auch bei sehr starker Anisotropie existiert und bereits bei geringerer Potentialunordnung als im isotropen Fall auftritt. Für den Fall sehr schwach gekoppelter Ebenen wird gezeigt, daß der kritische Exponent mit dem des isotropen Falles übereinstimmt und damit die übliche Einteilung in Universalitätsklassen bestätigt.

Page generated in 0.0683 seconds