1 |
Dynamical Systems in Categories / Dynamische Systeme in KategorienBehrisch, Mike, Kerkhoff, Sebastian, Pöschel, Reinhard, Schneider, Friedrich Martin, Siegmund, Stefan 09 December 2013 (has links) (PDF)
In this article we establish a bridge between dynamical systems, including topological and measurable dynamical systems as well as continuous skew product flows and nonautonomous dynamical systems; and coalgebras in categories having all finite products. We introduce a straightforward unifying definition of abstract dynamical system on finite product categories. Furthermore, we prove that such systems are in a unique correspondence with monadic algebras whose signature functor takes products with the time space. We substantiate that the categories of topological spaces, metrisable and uniformisable spaces have exponential objects w.r.t. locally compact Hausdorff, σ-compact or arbitrary time spaces as exponents, respectively. Exploiting the adjunction between taking products and exponential objects, we demonstrate a one-to-one correspondence between monadic algebras (given by dynamical systems) for the left-adjoint functor and comonadic coalgebras for the other. This, finally, provides a new, alternative perspective on dynamical systems.
|
2 |
Hyperbolicity & Invariant Manifolds for Finite-Time ProcessesKarrasch, Daniel 19 October 2012 (has links) (PDF)
The aim of this thesis is to introduce a general framework for what is informally referred to as finite-time dynamics. Within this framework, we study hyperbolicity of reference trajectories, existence of invariant manifolds as well as normal hyperbolicity of invariant manifolds called Lagrangian Coherent Structures. We focus on a simple derivation of analytical results. At the same time, our approach together with the analytical results has strong impact on the numerical implementation by providing calculable expressions for known functions and continuity results that ensure robust computation. The main results of the thesis are robustness of finite-time hyperbolicity in a very general setting, finite-time analogues to classical linearization theorems, an approach to the computation of so-called growth rates and the generalization of the variational approach to Lagrangian Coherent Structures.
|
3 |
Implications of eigenvector localization for dynamics on complex networksAufderheide, Helge E. 19 September 2014 (has links) (PDF)
In large and complex systems, failures can have dramatic consequences, such as black-outs, pandemics or the loss of entire classes of an ecosystem. Nevertheless, it is a centuries-old intuition that by using networks to capture the core of the complexity of such systems, one might understand in which part of a system a phenomenon originates. I investigate this intuition using spectral methods to decouple the dynamics of complex systems near stationary states into independent dynamical modes. In this description, phenomena are tied to a specific part of a system through localized eigenvectors which have large amplitudes only on a few nodes of the system's network.
Studying the occurrence of localized eigenvectors, I find that such localization occurs exactly for a few small network structures, and approximately for the dynamical modes associated with the most prominent failures in complex systems. My findings confirm that understanding the functioning of complex systems generally requires to treat them as complex entities, rather than collections of interwoven small parts. Exceptions to this are only few structures carrying exact localization, whose functioning is tied to the meso-scale, between the size of individual elements and the size of the global network.
However, while understanding the functioning of a complex system is hampered by the necessary global analysis, the prominent failures, due to their localization, allow an understanding on a manageable local scale. Intriguingly, food webs might exploit this localization of failures to stabilize by causing the break-off of small problematic parts, whereas typical attempts to optimize technological systems for stability lead to delocalization and large-scale failures. Thus, this thesis provides insights into the interplay of complexity and localization, which is paramount to ascertain the functioning of the ever-growing networks on which we humans depend.
|
Page generated in 0.0179 seconds