Spelling suggestions: "subject:"forage."" "subject:"borage.""
331 |
Wildlife habitat quality in southern Mississippi 8 years after intensive pine plantation establishmentCampbell, Tamara Nicole 30 April 2011 (has links)
I evaluated effects of 5 pine plantation establishment regimes 6 – 8 years postestablishment on loblolly pine (Pinus taeda) growth, vegetation characteristics, nutritional carrying capacity for white-tailed deer, and breeding birds in the Lower Coastal Plain of Mississippi. Treatments combined mechanical site preparation (MSP), chemical site preparation (CSP), and herbaceous weed control (HWC) designed to represent a range of operational intensities. Chemical SP provided greater long-term control of woody competition than MSP, but did not provide significant pine growth advantage. Vegetation richness, diversity, and structure were best maintained with MSP and year 1 banded HWC. Canopy cover appears to be shading out herbaceous understory and altering composition of woody understory toward more shade-tolerant species. Total forage biomass and 3 levels of carrying capacity declined on average 54% each year. Avian metrics decreased as treatment intensity increased. Regionally important species were influenced positively by greater vegetation coverage attained by banded HWC.
|
332 |
The elimination of error in taking yields of forage crops.Davidson, J. G. January 1925 (has links)
No description available.
|
333 |
Productivity and physiological responses of winter annual forage legumes to planting date and short-term rotation with forage sorghum for sheep production under no-till system in Limpopo ProvinceMotshekga, Lesego Minah January 2022 (has links)
Thesis (Ph.D. Agriculture (Plant Production)) -- University of Limpopo, 2022 / Livestock has evolved to serve as the foundation and backbone of human well-being, and it is an important component of South Africa's agricultural sector. The small stock such as sheep (Ovis aries) in Limpopo province has remained a significant and multifunctional livelihood strategy for the majority of the rural and resource-poor people. Factors such as population growth, urbanization, rising per capita income and changes in consumer tastes and preferences are all contributing to gradual increases in livestock product consumption and demand. According to the 2019 Abstract of Agricultural Statistics, South Africa is an importer of sheep and sheep products. If the sheep production industry in the province could pursue this opportunity and realize its full production potential then increased production could stimulate economic growth and development, particularly from the communal and smallholder sector. Objective one of the study seeks to describe the demographic and socio-economic characteristics of communal and smallholder sheep farmers, identify sheep feeding practices and describe the constraints that hinder the sustainable productive growth of communal and smallholder sheep systems.
Data were collected from one hundred and twenty (120) sheep farmers using a structured questionnaire across three agro-ecological zones of Limpopo province. Results revealed that overall, the majority of sheep farmers were males (78%) and farmers were above 60 years old (48%). Mean sheep flock size differed significantly between communal (24.74) and smallholder (62.36) farmers. Indigenous crossbreeds were the dominant breed kept by communal (86%) and smallholder (77%) farmers. The majority of communal and smallholder farmers (90% and 96%, respectively) reared their sheep under an extensive system with rangelands as the main source of feed. As a result, they experience a critical feed gap during June and September, the mid-winter to early spring until the first rains. The findings of the study revealed that feed shortages and diseases were ranked as the first and second production constraints by sheep farmers in both the production systems. In rangeland-dependent feeding systems, insufficient feed to meet animal demands create a feed gap, which is a critical factor that limits sheep productivity and causes
xxi
land degradation through overgrazing. Improved forages have been widely advocated as a critical step toward resolving this challenge. However, the adoption and utilization of improved technologies such as on-farm forage legume production by these farmers have been very low, contributing to the province's low sheep productivity. An extension of objective one of this study used primary data which was collected from a sample of 120 sheep farmers to determine the factors that influence the adoption of on-farm forage legume production and the perceived barriers to adoption by communal and smallholder sheep farmers in the Limpopo province. A Probit regression model and Principal Component Analysis (PCA) were used to analyze the data. The study revealed that the adoption of on-farm forage production by communal and smallholder sheep farmers is influenced by several factors, including gender, farming experience, knowledge of forage legume production, source of income, membership in farmer associations, access to extension services and farm size. Farmer perceived barriers to adoption of on-farm forage legume production identified by this study were low institutional support, lack of resources, lack of knowledge, shortage of water and objectives of the farmer. It is therefore recommended that intensive and high-quality extension support in partnership with industry associations and stakeholders is required for communal and smallholder farmers to improve forage technology awareness, training and promote on-farm forage production to transform communal and smallholder sheep feeding practices.
In the face of climate change, identifying forage species with a high potential to mitigate winter feed gap challenges under more variable climatic conditions is critical. Trifolium and Vicia species are forage legumes well known for producing high-quality forage, particularly protein, which is deficient in the majority of feed resources used for sheep feeding during the winter season. Climate change-induced stresses from rising temperatures, which these winter annual forage legumes are likely to face, necessitate agronomic and breeding approaches to improve their adaptability. Lack of knowledge on how these climate change mitigation approaches influence the productivity of winter annual forage legumes in the Pietersburg Plateau of Limpopo province prompted objective two of this study. A three-year field experiment laid in a split-split plot design with four replications was conducted to measure the effects of planting date, cultivar and harvest stage on the physiological traits associated with biomass production, forage quality, nodulation activity and
xxii
nutritive value of annual clover and vetch species. The results showed that the planting date and harvest stage had a significant effect on leaf gaseous exchange and biomass production. A non-significant effect of planting date on nutritive value was observed. Intercellular CO2 concentration, transpiration rate, stomatal conductance, instantaneous water use efficiency and intrinsic water use efficiency in cultivars increased with delayed planting, while a decrease in photosynthetic rate, shoot DM, root DM and nodule DM was observed. Overall among the cultivars, Resal, Alex, Elite, Laser and Dr Baumans showed more consistency in terms of leaf gaseous exchange, biomass production and quality traits under planting date 1 and varying harvest stages.
Investment in the year-round fodder flow establishment with high-quality forages is important in supporting sustainable sheep production. Forage legume-grass rotation systems are important not only for green fodder production of high crude protein, mineral and vitamin content throughout the year but also for enhanced soil fertility to reduce the nitrogen (N) fertilizer requirements. Accurate estimates of forage yields on the farm are required for fodder flow planning to ensure the seasonal distribution of fodder throughout the year. Objective three of the study was a no-tillage, short-term rotation experiment conducted to determine the growth and nutritive value of forage sorghum, planted after the winter annual forage legumes in combination with nitrogen application and to validate the performance of the APSIM-grain sorghum crop model in simulating forage sorghum growth and biomass production under different N rates. The treatments were planting date (January and February) and N source from inorganic N fertilizer (0 kg N ha-1, 60 kg N ha-1, 120 kg N ha-1, 180 kg N ha-1) and forage legume N residues (Alex, Capello, Dr Baumans, Elite, Hanka, Laser, Linkarus, Opolska, Resal and Timok) arranged in a randomized complete block design with four replicates. The findings of this study showed a significant response of forage sorghum growth and nutritive value to planting date. Delayed planting reduced plant height (11%), stem diameter (18%), LAI (6.7%), chlorophyll content (18%), NDVI (2.5%), photosynthetic rate (38%) and biomass production (8%). Delayed planting further reduced crude protein, acid detergent fiber and N yield. Nitrogen source from inorganic N at 60 kg N ha-1, 120 kg N ha-1, 180 kg N ha-1 and residual N from annual clover and vetch cultivars had a significant effect on morphological, physiological, yield and nutritive value parameters of forage sorghum.
xxiii
Generally, legume N residue effects on all the studied parameters of forage sorghum were similar to the inorganic N fertilizer of 60 kg N ha-1. However, the effects differed widely according to the species and cultivar of the legume. Resal, Laser, Elite Capello and Dr Baumans N residue consistently showed greater effects than other legume residues. They consistently outperformed inorganic 60 kg N ha-1 on the most measured parameters. The results confirm that annual clover-forage sorghum and vetch-forage sorghum rotation have huge potential to reduce the cost and negative environmental effects associated with inorganic N use in forage prediction systems. Regarding the evaluation of the potential of the APSIM grain legume model to simulate forage legume DM and plant height, in general, the model performed well and accurately in predicting the shoot dry matter accumulation and plant height under 0 kg N ha-1, 60 kg N ha-1 and 120 kg N ha-1. However, it underestimated both these parameters at 180 kg N ha-1 implying that the application of N up to 180 kg N ha-1 is not necessary. APSIM-grain module was able to accurately predict forage biomass production under N rates up to 120 kg N ha-1 and it is therefore considered reliable to support the N nutrition in the forage sorghum fodder production systems. / University of Limpopo, research office under the UCDP program and National Research Foundation-Thuthuka
|
334 |
Legume Establishment in Native Warm-Season Grass PasturesPhillips, Carter Bradley 18 December 2023 (has links)
Interseeding legumes in native warm-season grasses (NWSG) may improve the nutritive value of the stand, result in more consistent forage availability throughout the growing season, and increase forage yield. These benefits are often not realized due to difficulties in establishing legumes in existing NWSG stands. The objective of this study was to investigate the effect of planting method of legume interseeding, timing of legume interseeding, and the efficacy of burning plant residue on legume establishment in NWSG. Two forage legumes, 'Alice' white clover (Trifolium repens L.) and 'Freedom HR' red clover (Trifolium pratense L.), were interseeded into mixed 'Niagara' big bluestem (Andropogon gerardii Vitman), 'GA Ecotype' Indiangrass (Sorghastrum nutans Nash), and 'Camper' little bluestem (Schizachyrium scoparium) pasture in 2022 and 2023 at the Southern Piedmont AREC in Blackstone, Virginia. Planting method at three levels (no-till drill, broadcast, and non-planted control) were evaluated at three planting timing levels (fall planting, winter planting, and winter planting with burned residue). Among the treatment combinations, burned plots that were drilled resulted with the greatest spring clover count of 236 plants m-2, followed by winter drill (146 plants m-2) and burn broadcast (133 plants m-2). All fall plantings and all control plots were similar with a mean of 21 plants m-2. As a result of greater initial clover emergence, plots that were burned or seeded in the winter had greater clover content throughout the experiment; burned and drilled plots had over 90% clover ground cover throughout the second year. Domination of plots by clover in the second year caused yields and the proportion of NWSG in the stand to decline, with burned plots yielding 5,757 kg ha-1 compared to a winter-fall mean of 7,429 kg ha-1. Plots with greater clover content were able to sustain higher crude protein content and lower neutral detergent fiber content in both the establishment year and the second year. Though interseeding legumes benefitted nutritive values, these results suggest that red clover may be incompatible with the NWSG evaluated. Burned plots were especially affected by excessive competition. Further research is needed to evaluate forage legume species which complement NWSG in mixture rather than compete with them. / Master of Science / Interseeding legumes in native warm-season grasses (NWSG) may improve the nutritive value of the stand, result in more consistent forage availability throughout the growing season, and increase forage yield. These benefits are often not realized due to difficulties in establishing legumes in existing NWSG stands. The objective of this study was to investigate the effect of planting method of legume interseeding, timing of legume interseeding, and the efficacy of burning residue on legume establishment in NWSG. Two forage legumes, 'Alice' white clover (Trifolium repens L.) and 'Freedom HR' red clover (Trifolium pratense L.), were interseeded into mixed 'Niagara' big bluestem (Andropogon gerardii Vitman), 'GA Ecotype' Indiangrass (Sorghastrum nutans Nash), and 'Camper' little bluestem (Schizachyrium scoparium) pasture in 2022 and 2023 at the Southern Piedmont AREC in Blackstone, Virginia. Planting method at three levels (no-till drill, broadcast, and non-planted control) were evaluated at three planting timing levels (fall planting, winter planting, and winter planting with burned residue). Among the treatment combinations, burned and drilled plots produced more clover plants in spring at 236 plants m-2, followed by winter drill (146 plants m-2) and burn broadcast (133 plants m-2). All fall plantings and all control plots were similar with a mean of 21 plants m-2. As a result of greater initial clover emergence, plots that were burned or seeded in the winter had greater clover content throughout the experiment; burned and drilled plots had over 90% clover ground cover throughout the second year. Domination of plots by clover in the second year caused yields and the proportion of NWSG in the stand to decline, with burned plots yielding 5,757 kg ha-1 compared to a winter-fall mean of 7,429 kg ha-1. Plots with greater clover content were able to sustain higher crude protein content and lower neutral detergent fiber content in both the establishment year and the second year. Though interseeding legumes benefitted nutritive values, these results suggest that red clover may be incompatible with the NWSG which were evaluated. Burned plots were especially affected by excessive competition. Further research is needed to evaluate forage legume species which complement NWSG in mixture rather than compete with them.
|
335 |
POPULATION RESPONSES OF A GENERALIST INSECT PREDATOR AND ITS PREY TO PATCH CHARACTERISTICS IN FORAGE CROPSStasek, David Jon 13 August 2009 (has links)
No description available.
|
336 |
Utilization of proteins from intact forages by pure cultures of rumen bacteria /Hakimzadeh, Hamid January 1982 (has links)
No description available.
|
337 |
Heat damaged and toxic forages : chemical composition and animal response /Weiss, William Paul January 1985 (has links)
No description available.
|
338 |
Improving nutritive value of poor-quality roughages with alkali treatment and nitrogen supplementation /Rathee, Chander Singh January 1974 (has links)
No description available.
|
339 |
Diversity Relationships in Native, Warm-Season Plant Communities used for AgricultureBonin, Catherine Louise 07 April 2011 (has links)
Studies suggest that diverse mixtures of plants may improve forage productivity and also be suitable as bioenergy crops. The objectives of this research were: 1) to measure the effects of native, warm-season perennial (NWSP) forage mixtures and management methods on productivity, weed biomass, nutritive value, and community composition, and 2) to identify mechanisms that generate any positive diversity-productivity relationships over a three-year establishment period. In 2008, two experiments were established to evaluate the use of native, warm-season plants in forage-livestock systems using a pool of ten native species. The first, a large-scale, three-year, experiment tested three different NWSP mixtures (switchgrass monoculture, a four-grass mixture, and a ten-species mixture) and two management methods (grazed or biomass crop). Switchgrass monocultures had the lowest forage yield and highest weed biomass in both grazed areas and biomass crop exclosures. Analysis of forage nutritive value did not show many differences among mixtures, although the monoculture tended to have higher crude protein and lower fiber concentrations than the polycultures. Management method affected community composition, with NWSP richness higher and weed species richness lower in biomass crop exclosures than in grazed areas. A second experiment examined if species richness would enhance yields through a positive biodiversity effect. It employed additive partitioning to separate the selection effect (SE) from the complementarity effect (CE) by sowing random assemblages of NWSPs at five levels of richness into small plots. Species richness was associated with increased yields in the first year only, but overyielding and positive diversity effects were present in all three years. On average, over 50% of multi-species plots overyielded and 64% exhibited a positive biodiversity effect. Both SE and CE contributed to the biodiversity effect and the importance of each effect changed over time as communities became better established. All ten species were also individually analyzed for their yield potential, nutritive value, and elemental composition. Warm-season grasses tended to be higher-yielding but of lower nutritive value. All ten NWSPs contained sufficient concentrations of eleven elements to support nonlactating cows. These experiments demonstrated that diverse NWSP mixtures may be a valuable addition to both forage and bioenergy agroecosystems. / Ph. D.
|
340 |
The palatability and nutrient value of tall fescue (Festuca arundinacea Schreb.) forage and evaluation of seven systems of forage finishing beef steersBagley, Clyde Pattison 08 July 2010 (has links)
Most cattlemen in the Southeast are in the cow-calf business and sell calves at weaning. The extra cost of shipping feeder calves for finishing and then shipping the carcasses back to the East adds to the price of meat. This practice also takes away a potential source of profit by farmers who could finish these calves. Economically, it is difficult for states in the East to compete with grain producing states for the production of slaughter cattle in the feedlot. The alternative of using forages native to the areas of the Appalachians with a minimum of high energy grains should increase the economic potential for producing market animals in this area. / Ph. D.
|
Page generated in 0.0358 seconds