• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Discrimination of color copier/laser printer toners by Raman spectroscopy and subsequent chemometric analysis

Feldmann, Jeanna Marie 20 November 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Toner analysis has become an area of increased interest due to the wide availability of laser printers and photocopiers. Toner is most often encountered on paper in questioned document analysis. Because of this, it is important to develop methods that limit the interference of paper without damaging or destroying the document. Previous research using Fourier transform infrared spectroscopy (FTIR) has differentiated toners based on their polymer resin components. However, Raman spectroscopy and chemometric analysis are not typically used for the examination of this material. Raman spectroscopy is a popular tool for the chemical analysis of pigmented samples and was used to characterize cyan, yellow, and magenta toners. Analyses were performed using a dispersive micro-Raman spectrometer equipped with a 785nm diode laser, a CCD detector, and an objective at 20X magnification. One hundred samples of each color toner were collected. Three different and separate methods were developed for cyan, yellow, and magenta toners on paper to optimize results. Further analysis of the magenta toners was excluded due to a weak signal and significant paper interference. The data collected from the analyses of the blue and yellow toners was then processed using a combination of statistical procedures, including principal component analysis (PCA), agglomerative hierarchal clustering (AHC), and discriminative analysis (DA). Ninety-six blue toners were analyzed by PCA and three classes of spectra were suggested. Discriminant analysis showed that the three classes were well-differentiated with a cross-validation accuracy of 100% for the training set and 100% cross-validation accuracy for the external validation set. Eighty-eight yellow toners were analyzed by AHC and four classes of spectra were suggested. Discriminant analysis showed good differentiation between the classes with a cross-validation accuracy of 95.45% for the training set, but showed poor differentiation for the external validation set with a cross-validation accuracy of 72%. While these toners were able to be discriminated, no correlation could be made between the manufacturer, printer make and model, and the toner sample.
2

The room temperature evaporation behavior of purported azeotropes used as cleaning solutions in art conservation

Carrison, Megan Sara January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Finely-tuned solvent mixtures are used by art conservators for the difficult task of safely and selectively removing yellowed varnish, disfiguring grime, and discolored overpaint from the surface of oil paintings. This process is often referred to as “picture cleaning” and depends on the different solubilities of the obfuscating surface materials and the underlying paint medium. However, differential evaporation rates for the solvents used in these carefully formulated cleaning mixtures can change the potency of the mixture over time, which could potentially lead to solutions having solubility characteristics that are ineffective at cleaning, or worse yet, are deleterious to artists’ oil paints. Azeotropic blends of solvents have been proposed as an alternative for maintaining consistent solvent composition throughout the evaporation process while benefiting from their high vapor pressure relative to the pure solvents. Azeotropes are specific combinations of two or more solvents at a precise concentration that behave as a single solvent, maintaining a constant composition in both the liquid and vapor phases. The use of purportedly azeotropic solvent blends has appeared in the art conservation literature for the cleaning of historic objects and paintings. However, these solvent mixtures are taken from tables of azeotropic compositions given at their boiling point. We have studied one of these solutions, a 19:81 vol% mixture of isopropanol and n-hexane. For the first time, the actual evaporation behavior of this purported azeotropic mixture was followed in detail at room temperature conditions. Through the use of rudimentary vapor pressure measurements, gravimetric analysis, as well as sophisticated compositional determinations of both the liquid phase and headspace of evaporating mixtures by gas chromatography, this particular cleaning solution has been shown to be zeotropic (i.e. NOT an azeotrope) under the conditions typical of conservation studios. The true room temperature azeotropic composition was found instead to contain half as much isopropanol at 9.5 vol%. Art conservators should therefore be dubious of purportedly azeotropic mixtures reported at boiling points well above room temperature. Individual azeotropic cleaning blends are best determined chemically prior to their use in art restoration. Furthermore, the introduction of a model paint film to the evaporating room temperature azeotrope was shown to further confound its behavior, calling into question whether solvent systems can be configured to evaporate with constant composition from the surface of an artwork.
3

Multivariate Statistical Methods Applied to the Analysis of Trace Evidence

Szkudlarek, Cheryl Ann 22 August 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The aim of this study was to use multivariate statistical techniques to: (1) determine the reproducibility of fiber evidence analyzed by MSP, (2) determine whether XRF is an appropriate technique for forensic tape analysis, and (3) determine if DART/MS is an appropriate technique for forensic tape analysis. This was achieved by employing several multivariate statistical techniques including agglomerative hierarchical clustering, principal component analysis, discriminant analysis, and analysis of variance. First, twelve dyed textile fibers were analyzed by UV-Visible MSP. This analysis included an inter-laboratory study, external validations, differing preprocessing techniques, and color coordinates. The inter-laboratory study showed no statistically significant difference between the different instruments. The external validations had overall acceptable results. Using first derivatives as a preprocessing technique and color coordinates to define color did not result in any additional information. Next, the tape backings of thirty-three brands were analyzed by XRF. After chemometric analysis it was concluded that the 3M tapes with black adhesive can be classified by brand except for Super 33+ (Cold Weather) and Super 88. The colorless adhesive tapes were separated into two large groups which were correlated with the presence of aluminosilicate filler. Overall, no additional discrimination was seen by using XRF compared to the traditional instrumentation for tape analysis previously published. Lastly, the backings of eighty-nine brands of tape were analyzed by DART/MS. The analysis of the black adhesive tapes showed that again discrimination between brands is possible except for Super 33+ and Super 88. However, now Tartan and Temflex have become indistinguishable. The colorless adhesive tapes again were more or less indistinguishable from one another with the exception of Tuff Hand Tool, Qualpack, and a roll of 3M Tartan, which were found to be unique. It cannot be determined if additional discrimination was achieved with DART/MS because the multivariate statistical techniques have not been applied to the other instrumental techniques used during tape analysis.
4

3D CBCT analysis of the frontal sinus and its relationship to forensic identification

Krus, Bianaca S. January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The positive identification of human remains that are decomposed, burnt, or otherwise disfigured can prove especially challenging in forensic anthropology, resulting in the need for specialized methods of analysis. Due to the unique morphological characteristics of the frontal sinus, a positive identification can be made in cases of unknown human remains, even when remains are highly cremated or decomposed. This study retrospectively reviews 3D CBCT images of a total of 43 Caucasian patients between the ages of 20-38 from the Indiana University School of Dentistry to quantify frontal sinus differences between adult males and females and investigate the usefulness of frontal sinus morphology for forensic identification. Digit codes with six sections and eleven-digit numbers were created to classify each individual sinus. It was shown that 3D CBCT images of the frontal sinus could be used to make a positive forensic identification. Metric measurements displayed a high degree of variability between sinuses and no two digit codes were identical. However, it was also shown that there were almost no quantifiable and significant sexually dimorphic differences between male and female frontal sinuses. This study confirms that sex determination should not be a primary goal of frontal sinus analysis and highlights the importance of creating a standard method of frontal sinus evaluation based on metric measurements.
5

Spectroscopic and chemometric analysis of automotive clear coat paints by micro fourier transform infrared spectroscopy

Osborne Jr., James D. January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Clear coats have been part of automotive field paint finishes for several decades. Originally a layer of paint with no pigment, they have evolved into a protective layer important to the appearance and longevity of the vehicle's finish. These clear coats have been studied previously using infrared spectroscopy and other spectroscopic techniques. Previous studies focused on either all the layers of an automobile finish or on chemometric analysis of clear coats using other analytical techniques. For this study, chemometric analysis was performed on preprocessed spectra averaged from five separate samples. Samples were analyzed on a Thermo-Nicolet Nexus 670 connected to a Continuμm™ FT-IR microscope. Two unsupervised chemometric techniques, Agglomerative Hierarchical Clustering (AHC) and Principal Component Analysis (PCA), were used to evaluate the data set. Discriminant analysis, a supervised technique, was evaluated using several known qualifiers; these included cluster group from AHC, make, model, and year. Although discriminant analysis confirmed the AHC and PCA results, no correlation to make, model, or year was indicated.

Page generated in 0.0894 seconds