• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biology and chemistry of a meadow-to-forest transition in the Central Oregon Cascades

Heichen, Rachel S. 18 April 2002 (has links)
In this study, biological and chemical characteristics were determined for two high-elevation meadow-to-forest transitions located in the Central Oregon Cascades. The chloroform fumigation incubation method (CFIM) was used to determine microbial biomass C(MBC) and the N flush due to fumigation (NF), and meadow values were compared to forest values for each. Meadow and forest MBC values were also compared for estimates of MBC determined with microscopy and these values were compared to CFIM estimates. Net N mineralization and C mineralization were determined for an 85-d incubation period and used as a measure of labile C and N. Microbial biomass C and NF were then compared to these labile pools in order to investigate the relationship between the amount of each nutrient stored in biomass and the magnitude of the respective labile nutrient pool for each. Long-term and short-term net N mineralization rates and C/N ratios were also compared for meadow and forest soils, and the relationship between these two characteristics was examined. In general, microbial biomass estimates made with the CFIM method did not show any significant differences between meadow and forest soils. Mean MBC for both sites as determined by CFIM was estimated to be 369 and 406 μg C g⁻¹ soil in meadow and forest soils, respectively. Mean NF was estimated to be 37 and 56 μg N g⁻¹ soil in meadow and forest soils, respectively. MBC estimates made using microscopy showed biomass C to be greater in the forest than in the meadow. Mean MBC as determined by microscopy was estimated to be 529 and 1846 μg C g⁻¹ soil in meadow and forest soils, respectively. The NF measured as a percentage of the net N mineralized over 85 d was significantly greater in the forest than in the meadow soils, but was a substantial percentage in both. The means of these values were 30 and 166% in meadow and forest soils, respectively. This led to the conclusion that biomass N may be a very important pool of stored labile N in this ecosystem. Net N mineralization rates were almost always greater in the meadow than in the forest soils. Net N mineralization for the 10-d incubations averaged 21 μg N g⁻¹ soil in the meadow and 8 μg N g⁻¹ soil in the forest Rates for long-term N mineralization averaged 126 μg N g⁻¹ soil in the meadow and 52 μg N g⁻¹ soil in the forest. Net N mineralization rates were correlated with C/N ratios for both short-term and long-term incubations. / Graduation date: 2002
2

The imprint of coarse woody debris on soil biological and chemical properties in the western Oregon Cascades

Spears, Julie D. H. 03 April 2002 (has links)
The abundance and spatial heterogeneity of coarse woody debris (CWD) on the forest floor is a prominent feature of Pacific Northwest (PNW) forest ecosystems. The effect of CWD on soil solution chemistry, nutrient cycling and availability, soil physical structure and formation of soil organic matter, however, remains unknown. Therefore, studies on the spatial and temporal imprint of CWD on forest soils are timely and can fill critical gaps in our understanding of the role of CWD in PNW forest ecosystems. I investigated the effect of CWD on soils and soil solution at the H.J. Andrews Experimental Forest in a two-part study. Mineral soils were sampled beneath CWD to a depth of 60 cm. The top 15 cm of soil was also repeatedly sampled for seasonal differences. Control leachate, CWD leachate and soil solution from control soils and from under CWD were collected from the fall of 1999 until the spring of 2001. Results indicated that CWD leachates were much more acidic than water leaching from the forest floor without CWD. Intermediate stages of CWD decomposition had the highest concentrations of hydrophobic compounds and polyphenols of all stages of decay. Correspondingly, surface soils sampled from under well-decayed CWD were more acidic and had more exchangeable acidity and aluminum, and a lower percent base saturation than soils under the forest floor. Nutrient pools were not different under CWD, although nitrogen fluxes were slower under CWD. Although we had hypothesized that the spatial variability of CWD inputs may affect forest soils under CWD, we found that the spatial variability is much more temporal than I had hypothesized and is limited to the top five centimeters of the underlying soil. / Graduation date: 2002
3

Soil arthropods in the Central Cascades : slash burning effects and biology of some species

Estrada-Venegas, Edith G 01 May 1995 (has links)
Despite the recognized role of soil arthropod fauna on nutrient cycling and decomposition processes, many aspects of the effects of sylvicultural methods in forest ecosystems upon their biology remain poorly understood. The long term effects of prescribed fires on soil arthropods in forest ecosystems in the Pacific Northwest have never been studied. Soil samples were taken from three sites located in the Willamette National Forest in 1992: paired sites that were either clear-cut without burning and clear-cut with burning 40 years ago. One hundred and eight samples were processed; the arthropods were separated, identified and counted. To study the biology and behavior of some arthropods, eight species of oribatid mites were reared in laboratory conditions. Their life cycle, feeding behavior and reproduction were studied. Results indicated that there were no statistical significant treatment differences either in terms of total numbers of organisms or biomass. However, the majority of the commonest taxa did show offsetting treatment responses. A total of 204 taxa were found in the three sites. The most important groups included Collembola, mites, and insects. Other groups also represented, but in smaller numbers, were spiders, symphylans, pseudoscorpions, and centipedes. Of all these groups, oribatid mites was the best represented and appears to be a useful indicator of disturbances. / Graduation date: 1995

Page generated in 0.0831 seconds