• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 6
  • 1
  • Tagged with
  • 42
  • 42
  • 42
  • 42
  • 23
  • 13
  • 11
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Formalising non-functional requirements embedded in user requirements notation (URN) models

Dongmo, Cyrille 11 1900 (has links)
The growing need for computer software in different sectors of activity, (health, agriculture, industries, education, aeronautic, science and telecommunication) together with the increasing reliance of the society as a whole on information technology, is placing a heavy and fast growing demand on complex and high quality software systems. In this regard, the anticipation has been on non-functional requirements (NFRs) engineering and formal methods. Despite their common objective, these techniques have in most cases evolved separately. NFRs engineering proceeds firstly, by deriving measures to evaluate the quality of the constructed software (product-oriented approach), and secondarily by improving the engineering process (process-oriented approach). With the ability to combine the analysis of both functional and non-functional requirements, Goal-Oriented Requirements Engineering (GORE) approaches have become de facto leading requirements engineering methods. They propose through refinement/operationalisation, means to satisfy NFRs encoded in softgoals at an early phase of software development. On the other side, formal methods have kept, so far, their promise to eliminate errors in software artefacts to produce high quality software products and are therefore particularly solicited for safety and mission critical systems for which a single error may cause great loss including human life. This thesis introduces the concept of Complementary Non-functional action (CNF-action) to extend the analysis and development of NFRs beyond the traditional goals/softgoals analysis, based on refinement/operationalisation, and to propagate the influence of NFRs to other software construction phases. Mechanisms are also developed to integrate the formal technique Z/Object-Z into the standardised User Requirements Notation (URN) to formalise GRL models describing functional and non-functional requirements, to propagate CNF-actions of the formalised NFRs to UCMs maps, to facilitate URN construction process and the quality of URN models. / School of Computing / D. Phil (Computer Science)
42

Coverability and expressiveness properties of well-structured transition systems

Geeraerts, Gilles 20 April 2007 (has links)
Ces cinquante dernières annéees, les ordinateurs ont occupé une place toujours plus importante dans notre vie quotidienne. On les retrouve aujourd’hui présents dans de nombreuses applications, sous forme de systèmes enfouis. Ces applications sont parfois critiques, dans la mesure où toute défaillance du système informatique peut avoir des conséquences catastrophiques, tant sur le plan humain que sur le plan économique. <p>Nous pensons par exemple aux systèmes informatiques qui contrôlent les appareils médicaux ou certains systèmes vitaux (comme les freins) des véhicules automobiles. <p>Afin d’assurer la correction de ces systèmes informatiques, différentes techniques de vérification Assistée par Ordinateur ont été proposées, durant les trois dernières <p>décennies principalement. Ces techniques reposent sur un principe commun: donner une description formelle tant du système que de la propriété qu’il doit respecter, et appliquer une méthode automatique pour prouver que le système respecte la propriété. <p>Parmi les principaux modèles aptes à décrire formellement des systèmes informatiques, la classe des systèmes de transition bien structurés [ACJT96, FS01] occupe une place importante, et ce, pour deux raisons essentielles. Tout d’abord, cette classe généralise plusieurs autres classes bien étudiées et utiles de modèles à espace <p>d’états infini, comme les réseaux de Petri [Pet62](et leurs extensions monotones [Cia94, FGRVB06]) ou les systèmes communiquant par canaux FIFO avec pertes [AJ93]. Ensuite, des problèmes intéressants peuvent être résolus algorithmiquement sur cette classe. Parmi ces problèmes, on trouve le probléme de couverture, auquel certaines propriétés intéressantes de sûreté peuvent être réduites. <p>Dans la première partie de cette thèse, nous nous intéressons au problème de couverture. Jusqu’à présent, le seul algorithme général (c’est-à-dire applicable à n’importe quel système bien structuré) pour résoudre ce problème était un algorithme dit en arrière [ACJT96] car il calcule itérativement tous les états potentiellement non-sûrs et vérifie si l’état initial du système en fait partie. Nous proposons Expand, Enlarge and Check, le premier algorithme en avant pour résoudre le problème de couverture, qui calcule les états potentiellement accessibles du système et vérifie si certains d’entre eux sont non-sûrs. Cette approche est plus efficace en pratique, comme le montrent nos expériences. Nous présentons également des techniques permettant d’accroître l’efficacité de notre méthode dans le cas où nous analysons des réseaux de Petri (ou <p>une de leurs extensions monotones), ou bien des systèmes communiquant par canaux FIFO avec pertes. Enfin, nous nous intéressons au calcul de l’ensemble de couverture pour les réseaux de Petri, un objet mathématique permettant notamment de résoudre le problème de couverture. Nous étudions l’algorithme de Karp & Miller [KM69], une solution classique pour calculer cet ensemble. Nous montrons qu’une optimisation de cet algorithme présenté dans [Fin91] est fausse, et nous proposons une autre solution totalement neuve, et plus efficace que la solution de Karp & Miller. <p>Dans la seconde partie de la thèse, nous nous intéressons aux pouvoirs d’expression des systèmes bien structurés, tant en terme de mots infinis que de mots finis. Le pouvoir d’expression d’une classe de systèmes est, en quelque sorte, une mesure de la diversité des comportements que les modèles de cette classe peuvent représenter. En ce qui concerne les mots infinis, nous étudions les pouvoirs d’expression des réseaux de Petri et de deux de leurs extensions (les réseaux de Petri avec arcs non-bloquants et les réseaux de Petri avec arcs de transfert). Nous montrons qu’il existe une hiérarchie stricte entre ces différents pouvoirs d’expression. Nous obtenons également des résultats partiels concernant le pouvoir d’expression des réseaux de Petri avec arcs de réinitialisation. En ce qui concerne les mots finis, nous introduisons la classe des langages bien structurés, qui sont des langages acceptés par des systèmes de transition bien structurés étiquettés, où l’ensemble des états accepteurs est clos par le haut. Nous prouvons trois lemmes de pompage concernant ces langages. Ceux-ci nous permettent de réobtenir facilement des résultats classiques de la littérature, ainsi que plusieurs nouveaux résultats. En particulier, nous prouvons, comme dans le cas des mots infinis, qu’il existe une hiérarchie stricte entre les pouvoirs d’expression des extensions des réseaux de Petri considérées. / Doctorat en sciences, Spécialisation Informatique / info:eu-repo/semantics/nonPublished

Page generated in 0.1044 seconds