• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 15
  • 5
  • Tagged with
  • 55
  • 55
  • 37
  • 36
  • 36
  • 21
  • 15
  • 13
  • 13
  • 13
  • 12
  • 10
  • 10
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Observations et modélisations de proto-étoiles massives dans le cadre des observatoires Herschel

Marseille, Matthieu 27 November 2008 (has links)
La formation des étoiles massives reste, à ce jour, encore mal connue à cause de l’extrême quantité d’énergie que ces étoiles dégagent, limitant en conséquence leurs masses théoriques et contredisant les observations de ce type d’étoile. Les observatoires du futur (en particulier l’observatoire spatial Herschel) vont tenter de répondre à cette problématique grâce notamment aux émissions moléculaires de l’eau. L’analyse précise et correcte de ces données, dans l’avenir, nécessite donc dès aujourd’hui un travail associant des observations et des modélisations des objets concernés. C’est dans ce but que cette thèse a consisté en l’élaboration d’une méthode de modélisation dite « globale » d’objets protostellaires massifs (proto-amas ou cœurs denses massifs). Celle-ci a permis une description physique et une étude chimique des multiples cœurs denses massifs étudiées, et a ouvert de nombreuses voies vers des aspects évolutifs. Elle a également donné des indices pour a?ner le programme d’observation en temps garanti WISH des raies moléculaires de l’eau et con?rmé le rôle clef de cette molécule pour la compréhension de la formation des étoiles massives. / Today the formation of massive stars is still not well understood due to the huge interac- tion of these objects with their environment, leading to a theoretical limit in the ?nal mass that observations contradict. The future observatories, like the Herschel Space Observatory, will try to answer some of the questions linked to this topic, particularly through the water line emissions. The correct and precise analysis of the future data is then necessary and needs a full work linking the observations and the modelling of the objects that will be studied. Hence the main goal of this PhD Thesis was to elaborate a robust and global modeling method of the massive dense cores in which high-mass stars are forming. The method leaded to a physical description and a chemical study of multiple massive dense cores, opening new views on evolution aspects. In addition it gave some tweaks on the guaranteed-time key program WISH for the water line emissions and con?rmed the key role of this molecule for a better understanding of the high-mass star formation.
22

Revisiting the chemistry of star formation / Revisiter la chimie de la formation stellaire

Vidal, Thomas 25 September 2018 (has links)
Les études astrochimiques de la formation stellaire sont particulièrement importantes pour la compréhension de l'évolution de l'Univers, du milieu interstellaire diffus à la formation des systèmes stellaires. Les récentes avancées en matière de modélisation chimique permettent d'apporter de nouveaux résultats sur le processus de formation stellaire et les structures mises en jeu. L'objectif de ma thèse était donc d'apporter un regard neuf sur la chimie de la formation stellaire en utilisant les récentes avancées sur le modèle chimique Nautilus. J'ai pour cela étudié l'évolution de la chimie du soufre durant la formation stellaire pour tenter d'apporter de nouvelles réponses au problème de déplétion du soufre. J'ai d'abord effectué une révision du réseau chimique soufré et étudié son effet sur la modélisation du soufre dans les nuages denses. En comparant aux observations, j'ai montré que le modèle textsc{Nautilus} était capable de reproduire les abondances des espèces soufrées dans les nuages denses en utilisant comme abondance élémentaire de soufre son abondance cosmique. Ce résultat m'a permis d'apporter de nouveaux indices sur les reservoirs de soufre dans ces objets. Puis j'ai effectué une étude complète de la chimie du souffre dans les coeurs chauds en me concentrant sur les effets sur la chimie de la composition pre-effondrement. J'ai également étudié les conséquences des différentes simplifications couramment faites pour la modélisation des coeurs chauds. Mes résultats montrent que la composition pre-effondrement est un paramètre majeur de l'évolution chimique des coeurs chauds, fournissant de nouveaux indices pour expliquer la variété de compositions en espèces soufrées observée dans ces objets. De plus, ma recherche a mis en évidence la nécessité d'uniformiser les modèles de chimie utilisés pour les coeurs chauds. Enfin, j'ai développé une méthode efficace pour inverser les paramètres initiaux d'effondrement de nuages denses en me basant sur une base de données de modèles physico-chimiques d'effondrement, ainsi que sur l'observation d'enveloppes de protoétoiles de Classe 0. A partir d'un échantillon de 12 sources, j'ai pu en déduire des probabilités concernant les possibles paramètres initiaux d'effondrement de la formation d'étoiles de faible masse. / Astrochemical studies of star formation are of particular interest because they provide a better understanding of how the chemical composition of the Universe has evolved, from the diffuse interstellar medium to the formation of stellar systems and the life they can shelter. Recent advances in chemical modeling, and particularly a better understanding of grains chemistry, now allow to bring new hints on the chemistry of the star formation process, as well as the structures it involves. In that context, the objective of my thesis was to give a new look at the chemistry of star formation using the recent enhancements of the Nautilus chemical model. To that aim, I focused on the sulphur chemistry throughout star formation, from its evolution in dark clouds to hot cores and corinos, attempting to tackle the sulphur depletion problem. I first carried out a review of the sulphur chemical network before studying its effects on the modeling of sulphur in dark clouds. By comparison with observations, I showed that the textsc{Nautilus} chemical model was the first able to reproduce the abundances of S-bearing species in dark clouds using as elemental abundance of sulphur its cosmic one. This result allowed me to bring new insights on the reservoirs of sulphur in dark clouds. I then conducted an extensive study of sulphur chemistry in hot cores and corinos, focusing on the effects of their pre-collapse compositions on the evolution of their chemistries. I also studied the consequences of the use of the common simplifications made on hot core models. My results show that the pre-collapse composition is a key parameter for the evolution of hot cores which could explain the variety of sulphur composition observed in such objects. Moreover, I highlighted the importance of standardizing the chemical modeling of hot cores in astrochemical studies. For my last study, I developed an efficient method for the derivation of the initial parameters of collapse of dark clouds via the use of a physico-chemical database of collapse models, and comparison with observations of Class 0 protostars. From this method, and based on a sample of 12 sources, I was able to derive probabilities on the possible initial parameters of collapse of low-mass star formation.
23

Emission moleculaire dans les regions de formation stellaire

Gusdorf, Antoine 28 November 2008 (has links) (PDF)
Des observations récentes montrent que les jeunes étoiles en cours de formation éjectent de la matière à des dizaines de kilomètres par seconde, sous la forme de jets et flots impactant le milieu ambient dont l'effondrement est a l'origine de la formation stellaire. L'impact supersonique entre le jet et le nuage moléculaire parent de l'étoile génère un front de choc sous la forme d'un “bow-shock” se propageant dans le gaz interstellaire, et qui s'accompagne d'un choc en retour qui se propage le long du jet.<br /><br />La structure de ces chocs dépend de leur vitesse ainsi que des propriétés physiques du gaz dans lequel ils se propagent, et notamment de la valeur du champ magnétique local. Les simulations numériques de type magnétohydrodynamique de propagation de tels chocs permettent de contraindre les propriétés physiques et chimiques du gaz dans lequel est générée l'émission moléculaire. Les chocs interstellaires, stationnaires et non stationnaires sont ainsi modélisés, et des grilles de modèles sont construites, pour différentes plages de valeurs des paramètres préchocs qui sont aussi les paramètres d'entrée du code de choc, parmi lesquels la vitesse de choc, la densité préchoc, le champ magnétique, et l'âge des chocs dans le cas des chocs non stationnaires.<br /><br />L'émission de la molécule de dihydrogène est d'abord étudiée. En raison de son importance particulière (due à son importante densité ainsi qu'au rôle crucial joué en tant que refroidisseur du gaz et de partenaire de collision pour les espèces moléculaires), la population de ses niveaux est résolue à l'intérieur du code de choc, ainsi que son transfert de rayonnement. L'onde de choc modifie la composition chimique du gaz, dissociant partiellement ou totalement l'hydrogène moléculaire, qui est le principal agent refroidissant du gaz. Dans les régions où le dihydrogène subsiste, il est excité collisionnellement , générant ainsi de l'émission dans ses transitions rovibrationnelles et purement rotationnelles. Cette émission est en effet observée dans l'infrarouge par les satellites ISO (Infrared Space Observatory) et Spitzer. Les diagrammes d'excitation correspondants sont ensuite utilisés pour comparer les modèles aux observations existantes pour le flot bipolaire L1157, détecté autour d'une jeune protoétoile de Classe 0. Ces comparaisons confirment la nécessité d'un recours aux modèles de chocs non stationnaires pour interpréter les densités de colonne observées pour les niveaux de H2.<br /><br />De telles régions de chocs génèrent des conditions physiques et chimiques elles mêmes à l'origine d'une chimie particulière favorisant la formation de molécules caractéristiques telles que SiO, dont l'émission est alors observée dans les fenêtres infrarouge et submillimétrique (IRAM, CSO, JCMT). Le transfert de rayonnement de la molécule de SiO est simulée à l'aide d'un programme numérique reposant sur l'approximation LVG (Large Velocity Gradient). Ce programme est écrit, testé dans des conditions basiques, comparé à d'autres modèles de référence, puis utilisé en sortie du code de choc pour les modèles des grilles mentionnées plus haut. Les mécanismes d'émission des raies moléculaires sont ainsi étudiés, des digrammes d'intensité intégrée et des profils de raie sont alors produits. Des comparaisons avec les observations de la région L1157 sont effectuées indépendamment des résultats relatifs au dihydrogène, avec un bon accord pour des modèles de choc stationnaires et sous diverses hypothèses de répartition initiale du silicium dans les grains de poussière, et de l'oxygène dans la phase gazeuse. Enfin, l'émission de SiO est aussi étudiée dans le cadre de ces mêmes hypothèses dans les chocs non stationnaires. La comparaison simultanée des observations SiO et H2 est alors réalisée, c'est à dire leur ajustement par un même modèle de choc, avec des résultats encourageants.<br /><br />Pour compléter cette étude, l'émission de CO est aussi envisagée dans les modèles de chocs stationnaires et non stationnaires, et le monoxyde de carbone est ajouté à la liste des molécules dont la production et l'émission peuvent être modélisées par le même choc que H2 et SiO avec un accord satisfaisant, même si cet ajout ne génère pas de contrainte supplémentaire par rapport à ces deux molécules.
24

Etude dans l'ultraviolet lointain de la composante gazeuse de l'environnement circumstellaire des étoiles Ae/Be de Herbig -- L'hydorgène moléculaire

Martin-Zaidi, Claire 04 November 2005 (has links) (PDF)
L'étude de l'hydrogène moléculaire est fondamentale pour une meilleure compréhension des mécanismes de formation stellaire et planétaire. En effet, le H2 est la molécule la plus abondante dans l'environnement circumstellaire des étoiles jeunes, et permet<br />donc d'estimer les quantités totales de gaz disponibles à chaque étape de l'évolution de la protoétoile vers la séquence principale. Dans ce contexte, j'ai mené une étude sur la composante gazeuse, et en particulier sur l'hydrogène moléculaire, dans l'environnement circumstellaire d'un échantillon d'étoiles pré-séquence principale, dites étoiles Ae/Be de Herbig, à différents stades de leur évolution vers la séquence principale.<br /><br />A partir des spectres observés par le satellite FUSE dans<br />l'ultraviolet lointain, j'ai mis en évidence plusieurs mécanismes d'excitation de l'hydrogène moléculaire qui sont clairement corrélés à la structure de l'environnement circumstellaire. En particulier, pour les étoiles de type Be, qui sont les plus jeunes de l'échantillon, les diagrammes d'excitation de l'hydrogène moléculaire circumstellaire peuvent être assez bien reproduits par un modèle de région de photodissociation. Mon analyse montre que ces étoiles sont entourées d'une enveloppe circumstellaire, reste<br />du nuage dans lequel elles se sont formées. Les étoiles de type Ae/B9 de l'échantillon, connues pour être entourées de disques, forment un groupe plus hétérogène. Pour la plupart de ces étoiles, du fait des angles d'inclinaison, le gaz présent dans les disques est très rarement observé car la ligne de visée ne traverse pas les disques. Lorsque du H2 d'origine circumstellaire<br />est observé, j'ai mis en évidence la présence d'un milieu chaud très proche de l'étoile, excité par collisions. En utilisant un modèle de disque ouvert et en supposant que la poussière et le gaz sont couplés, j'ai montré que le gaz chaud que l'on observe ne se situe pas dans le disque, mais peut avoir plusieurs origines. Le gaz chaud peut provenir d'une région chaude de type chromosphère étendue ou de la photoévaporation du disque.<br /><br />Ces différences de structure dans l'environnement circumstellaire des étoiles de Herbig Ae et Be reflètent la différence d'évolution de ces deux groupes d'étoiles. En effet, cette structuration différente du milieu circumstellaire peut être expliquée par une évolution plus rapide des étoiles de Herbig de type Be qui sont associées à de plus forts champs de rayonnement. <br /><br />Ces résultats représentent des contraintes fortes sur les<br />conditions physiques dans lesquelles se trouve le gaz circumstellaire, qui, une fois complétées par de nouvelles observations, permettront d'avoir une compréhension globale de la structure et de l'évolution de l'environnement circumstellaire des étoiles jeunes.
25

Les systemes binaires jeunes et leur environnement proche: observations a haute resolution angulaire

Duchene, Gaspard 07 July 2000 (has links) (PDF)
Le travail presente dans cette these a pour objet l'etude de certaines proprietes des systemes binaires pre-sequence principale: la proportion de ces systemes dans differentes populations, l'existence et les proprietes de disques de matiere en leur sein, et enfin l'interaction de ces disques avec les deux composantes stellaires du systeme. A ces fins, plusieurs techniques d'imagerie a haute resolution angulaire sont utilisees, ainsi que des simulations numeriques de type Monte-Carlo. La proportion de systemes binaires dans deux amas stellaires ages d'environ deux millions d'annees est determinee, puis une comparaison de ces resultats avec des etudes anterieures est presentee. L'ensemble de ces donnees est compare aux modeles de formation et d'evolution dynamique des amas d'etoiles, et semblent en accord avec l'hypothese selon laquelle le processus de formation aboutit a un proportion ``initiale'' de binaires proche de 100%, avant que les nombreuses interactions dans les amas ne detruisent une partie de ces systemes. La spectroscopie de systemes binaires T Tauri revele que les deux composantes d'un meme systeme possedent simultanement des disques circumstellaires, ce qui suggere que les environnements des deux composantes n'evoluent pas independamment durant le premier million d'annees. Des images directes de deux disques circumbinaires et deux disques circumstellaires au sein de systemes binaires ont egalement ete obtenues dans le visible, le proche infrarouge et le domaine millimetrique. En couplant ces resultats a l'utilisation d'un code numerique decrivant la diffusion multiple des photons, il est possible d'estimer les proprietes geometriques des disques, ainsi que celles des grains de poussiere qui y sont presents.
26

La deutération dans les protoétoiles de faible masse

Parise, Bérengère 20 September 2004 (has links) (PDF)
Malgré la faible abondance du deutérium dans l'Univers (D/H ~ 1.5 10e-5), des molécules deutérées sont détectées en grande abondance dans les régions de formation d'étoiles, avec un fractionnement (rapport de l'abondance de la molécule deutérée à celle de son isotope principal) supérieur de plusieurs ordres de grandeur à l'abondance cosmique du deutérium. Ces molécules deutérées représentent des sondes précieuses pour déterminer les conditions physiques régnant lors de la formation d'une étoile. L'incorporation préférentielle d'atomes de deutérium dans les molécules est une conséquence de la différence d'énergie de point zéro entre une espËce deutérée et son isotope principal. Les températures indiquées par les fractionnements observés en phase gazeuse étant bien plus faibles que la température actuelle du gaz, il est généralement admis que ces molécules ont été formées lors d'une phase antérieure froide et dense (phase de coeur préstellaire), par des réactions en phase gazeuse ou à la surface des grains, puis stockées dans les manteaux de glace des grains. Elles sont libérées en phase gazeuse quand la protoétoile nouvellement formée chauffe son enveloppe et évapore les glaces. Nous étudions dans cette thèse les processus physico-chimiques menant à un tel degré de deutération dans les environnements des protoétoiles de faible masse, progéniteurs d'étoiles telles que notre soleil. Nous présentons dans un premier temps des observations de molécules deutérées (en particulier eau, formaldéhyde et méthanol) dans les enveloppes de gaz et de poussière entourant les jeunes protoétoiles. Des observations dans le domaine millimétrique ont permis de mettre en évidence un fort degré de deutération du méthanol dans le gaz constituant l'enveloppe. En particulier, l'isotope triplement deutéré a été détecté avec un fractionnement CD3OH/CH3OH de 1%. Les fractionnements observés sont compatibles avec un scénario de formation du formaldéhyde et du méthanol à la surface des grains de poussière. L'analyse de l'émission de l'eau dans ces memes environnements conduit paradoxalement à un fractionnement environ dix fois plus faible, en accord avec la limite supérieure sur le fractionnement de l'eau dans les glaces constituant les manteaux des grains de poussière, déterminée par des observations dans le proche infrarouge. Nous présentons enfin un modèle de chimie à la surface des grains se proposant de comprendre pourquoi le deutérium est préférentiellement incorporé dans les molécules de formaldéhyde et de méthanol plutot que dans l'eau.
27

Impact de l'ionisation sur les nuages moléculaires et la formation des étoiles Simulations numériques et observations

Tremblin, Pascal 09 November 2012 (has links) (PDF)
À toutes les échelles de l'Astrophysique, l'impact de l'ionisation venant des étoiles massives est une question cruciale. A l'échelle galactique, l'ionisation peut réguler la formation des étoiles en soutenant les nuages moléculaires contre l'effondrement gravitationnel et à l'échelle stellaire, diverses indications pointent vers une naissance possible du système solaire à proximité des étoiles massives. À l'échelle du nuage moléculaire, il est clair que le gaz chaud et ionisé comprime le gaz froid qui l'entoure, conduisant à la formation des piliers, des globules, et des coquilles de gas dense dans lesquelles des coeurs pré-stellaires sont observés. Quels sont les mécanismes de formation de ces structures? La formation de ces coeurs pré-stellaires est-elle déclenchée par l'ionisation ou préexistante ? Les étoiles massives ont-elles un impact sur la distribution en densité du gaz environnant ? Ont-elles un impact sur la distribution des étoiles en fonction de leur masse (la fonction de masse initiale, IMF) ? Cette thèse vise à apporter des éléments de réponse à ces questions, en se concentrant en particulier sur la compréhension de la formation des structures entre le gaz froid et ionisé. Nous présentons l'état de l'art des travaux théoriques et des observations des régions ionisées (régions Hii) et nous introduisons les outils numériques qui ont été développés pour modéliser l'ionisation dans les simulations d'hydrodynamique turbulente effectuées avec le code HERACLES. Grâce aux simulations, nous présentons un nouveau modèle pour la formation des piliers basés sur la courbure et l'effondrement de la coquille dense sur elle-même et un nouveau modèle pour la formation de globules basé sur la turbulence du gaz froid. Plusieurs diagnostics ont été développés pour tester ces nouveaux modèles sur les observations. Si les piliers sont formés par l'effondrement de la coquille dense sur elle-même, le spectre en vitesse d'un pilier en formation présente un spectre avec une composante décalée vers le rouge et une composante décalée vers le bleu correspondant aux parties de la coquille en avant-plan et en arrière-plan qui rentrent en collision sur la ligne de visée. Si les globules émergent en raison de la turbulence du nuage moléculaire, le spectre en vitesse de ces globules est décalé à des vitesses différentes de celles de la coquille, des piliers et des coeurs denses qui suivent l'expansion globale de la région H ii. Un autre diagnostic est l'impact de la compression sur la fonction de densité de probabilité (PDF) du gaz froid. La distribution a un double pic lorsque la pression dynamique turbulente est faible par rapport à la pression du gaz ionisé. Il s'agit de la signature de la compression causée par l'expansion de la bulle ionisée. Quand la turbulence est élevée, les deux pics fusionnent et la compression peut encore être identifiée, mais la signature est moins claire. Nous avons utilisé des cartes de densité de colonne Herschel et des données de raies moléculaires pour caractériser la structure en densité et vitesse de l'interface entre le gaz ionisé et le gaz froid dans plusieurs régions : RCW 120, RCW 36, Cygnus X, la Nébuleuse de la Rosette et de l'Aigle. En plus des diagnostics issus des simulations, des prédictions analytiques des paramètres de la coquille et des piliers ont été testées et confrontées aux observations. Dans toutes ces régions, les modèles analytiques et les diagnostics issus des simulations donnent des résultats concluants. La structure en vitesse d'un pilier en formation dans la nébuleuse de la Rosette suggère qu'il a été formé par l'effondrement de la coquille sur elle-même et la dispersion des vitesses moyennes des globules dans Cygnus X et dans la Nébuleuse de la Rosette tend à confirmer leur origine turbulente. La compression due au gaz ionisé est visible sur la PDF du gaz froid dans la plupart des régions étudiées. Ce résultat est important pour le lien entre l'IMF et les propriétés globales du nuage. Si l'IMF peut être déduite de la PDF d'un nuage, l'impact des étoiles massives sur la PDF doit être pris en compte. En outre, nous présentons des simulations dédiées de RCW 36 qui suggèrent que les coeurs denses au bord du gaz ionisé ne sont pas pré-existants, leur formation a été déclenchée par la compression due à l'ionisation. En conséquence, l'ionisation des étoiles massives est un processus clé qui doit être pris en compte pour la compréhension de l'IMF. En annexe, nous présentons également des travaux réalisés en parallèle de cette thèse : l'échange de charge dans la collision entre vents planétaires et stellaires, en collaboration avec le professeur E. Chiang, à l'école d'été ISIMA 2011 à Pékin; et le test de site en sub-millimétrique sur la station Concordia en Antarctique avec l'équipe CAMISTIC (PI : G. Durand).
28

Environnement circumstellaire des étoiles jeunes

Malbet, Fabien 14 December 1992 (has links) (PDF)
L'environnement proche des étoiles jeunes de faible masse recèle une multitude de phénomènes physiques liés à la formation des étoiles. Ce mémoire de thèse présente un ensemble de travaux théoriques, expérimentaux et observationnels relatifs à ces phénomènes. Après une description des propriétés attribuées aux étoiles de type T Tauri, FU Orionis et Ae/Be de Herbig et plus particulièrement de leurs disques d'accrétion, j'aborde l'étude de la structure verticale de ces disques, issue du transfert de rayonnement et de l'équilibre hydrostatique. La dissipation d'énergie provient du frottement visqueux des particules du disque s'accrétant sur l'étoile, ainsi que de l'absorption du rayonnement stellaire. Il est montré que le rayonnement rasant de l'étoile sur le disque crée une << chromosphère >> . J'étudie par la suite la possibilité de détecter directement le milieu circumstellaire (disque, binarité, planètes, jets,...) grâce aux techniques à haute-résolution angulaire (optique adaptative et interférométrie). Je présente ensuite un prototype de coronographe à haute résolution spatiale que j'ai conçu, modélisé, construit et testé en vue de telles observations. Je décris finalement les observations de l'environnement du système stellaire jeune Z Canis Majoris que j'ai réalisées à la limite de la diffraction dans le proche infrarouge au télescope de 3.60 mètres de l'ESO. Elles montrent que cet objet est composé d'une binaire et d'une structure étendue en forme de disque, perpendiculaire au jet connu et éclairée non pas par la source centrale mais par le compagnon infrarouge.
29

Aspects dynamiques du milieu interstellaire

Lesaffre, Pierre 30 September 2002 (has links) (PDF)
Ce travail de thèse met en oeuvre la microphysique très riche <br />du milieu interstellaire dans plusieurs problèmes hydrodynamiques <br />à très haute résolution, tous associés à la formation des étoiles.<br /><br /> La première partie du travail concerne le développement d'un <br />modèle numérique monodimensionnel que nous avons appliqué à trois <br />domaines différents.<br /><br /> Dans les jets protostellaires, nous dégageons les temps de mise <br />à l'état stationnaire des chocs. Nous précisons les domaines <br />d'application de l'hypothèse quasi-stationnaire, et mettons au <br />jour une instabilité liée à la reformation de la molécule H2<br />dans les chocs dissociants. Pour ces derniers chocs, nous <br />produisons un réseau chimique simplifié qui rendra possible leur <br />étude tridimensionnelle.<br /><br /> Dans le cadre des régions de photo-ionisation, nous utilisons <br />le même code pour discuter le rôle de l'instabilité de Rayleigh-Taylor <br />dans la formation des structures en piliers observées. Il nous <br />apparaît que la gravitation est l'un des principaux responsables <br />de la naissance de cette instabilité. De plus, nous produisons <br />les premières simulations dynamiques d'un front mixte d'ionisation <br />et de photodissociation.<br /><br /> Enfin, le code se révèle très utile pour rendre compte de <br />l'effondrement sphérique des condensations préstellaires. <br />Nous confrontons nos modèles à des contraintes observationnelles <br />dégagées sur IRAM 04191. Nous montrons que les conditions initiales <br />d'Ébert-Bonnor sont préférables à la sphère singulière isotherme. <br />Le traitement détaillé du transfert de l'énergie associé à la chimie <br />des agents refroidissant constitue encore une très nette amélioration.<br /><br /> La deuxième partie de ce travail se concentre sur l'étude <br />théorique de l'instabilité thermique. L'étude linéaire révèle <br />une longueur caractéristique de fragmentation qui fournit un <br />critère de raffinement utile aux maillages à résolution adaptative. <br />L'étude homobare qui prédit la répartition de la masse permet <br />aussi de prévoir le coût des simulations avec raffinement de maillage. <br />Ces deux outils analytiques fournissent les premières pistes <br />vers l'interprétation des spectres de masse observés. L'examen <br />des rôles complémentaires de la gravité et de l'instabilité <br />thermique permet de formuler des scénarios pour la fragmentation <br />du milieu interstellaire. Enfin, des simulations numériques tridimensionnelles <br />réalisées avec le code RAMSES à raffinement adaptatif de maillage <br />confirment qualitativement ces résultats.
30

Nuage hypermassif, chocs et efficacité de formation stellaire / Hypermassive cloud, shock and stellar formation efficiency

Louvet, Fabien 22 September 2014 (has links)
Les étoiles massives, de type O ou B, sont d'une importance capitale pour le budget énergétique des galaxies et l'enrichissement du milieu interstellaire. Néanmoins, leur formation, contrairement à celle des étoiles de type solaire reste sujet à débats, sinon une énigme. Les toutes premières étapes de la formation des étoiles massives ainsi que la formation de leur nuage parent sont des thèmes qui stimulent une grande activité sur les plans théorique et observationnel depuis une décennie. Il semble maintenant acquis que les étoiles massives naissent dans des cœurs denses massifs, qui se forment au travers de processus dynamiques, tels que les flots de gaz collisionnels. Au cours de ma thèse, j'ai mené une étude approfondie de la formation des cœurs denses et des étoiles massives au sein de la structure hypermassive W43-MM1, localisée à 6~kpc du soleil. Dans un premier temps, j'ai montré une corrélation directe entre l'efficacité à former des étoiles et la densité volumique des nuages moléculaires, en décalage avec un certain nombre d'études précédentes. En effet, la distribution spatiale et de masse des cœurs denses massifs en formation au sein de W43-MM1 suggère que ce filament hypermassif est en phase de flambée de formation d'étoiles, flambée d'autant plus grande que l'on se rapproche de son cœur. J'ai comparé ces résultats observationnels aux modèles numériques et analytiques d'efficacité de formation stellaire les plus récents. Cette confrontation permet non seulement d'apporter de nouvelles contraintes sur la formation des filaments hypermassifs, mais suggère aussi que la compréhension de la formation d'étoiles dans les nuages hypermassifs nécessite une description fine de la structure de ces objets exceptionnels. En second lieu, ayant montré que la formation des étoiles massives est fortement dépendante des propriétés des filaments qui les forment, je me suis naturellement intéressé aux processus de formation de ces filaments, grâce à une étude de leur dynamique globale. Plus précisément, j'ai utilisé un traceur de chocs (la molécule de SiO) pour discerner les chocs dûs aux processus locaux de formation des étoiles (jets et flots bipolaires), des chocs dûs aux processus permettant la formation du nuage. J'ai ainsi pu, via une étude sans précédent alliant observations et modélisation de chocs dans une région formant de nombreuses étoiles, montrer l'existence de chocs à basse vitesse, première signature directe de la formation du nuage moléculaire dans lequel les étoiles massives se forment. Ces résultats constituent une étape importante reliant, via des processus dynamiques, la formation des nuages moléculaires à la formation des étoiles massives. / O and B types stars are of paramount importance in the energy budget of galaxies and play a crucial role enriching the interstellar medium. However, their formation, unlike that of solar-type stars, is still subject to debate, if not an enigma. The earliest stages of massive star formation and the formation of their parent cloud are still crucial astrophysical questions that drew a lot of attention in the community, both from the theoretical and observational perspective, during the last decade. It has been proposed that massive stars are born in massive dense cores that form through very dynamic processes, such as converging flows of gas. During my PhD, I conducted a thorough study of the formation of dense cores and massive stars in the W43-MM1 supermassive structure, located at ~ 6 kpc from the sun. At first, I showed a direct correlation between the star formation efficiency and the volume gas density of molecular clouds, in contrast with scenarii suggested by previous studies. Indeed, the spatial distribution and mass function of the massive dense cores currently forming in W43-MM1 suggests that this supermassive filament is undergoing a star formation burst, increasing as one approaches its center. I compared these observational results with the most recent numerical and analytical models of star formation. This comparison not only provides new constraints on the formation of supermassive filaments, but also suggests that understanding star formation in high density, extreme ridges requires a detailed portrait of the structure of these exceptional objects. Second, having shown that the formation of massive stars depends strongly on the properties of the ridges where they form, I studied the formation processes of these filaments, thanks of the characterization of their global dynamics. Specifically, I used a tracer of shocks (SiO molecule) to disentangle the feedback of local star formation processes (bipolar jets and outflows) from shocks tracing the pristine formation processes of the W43-MM1 cloud. I was able, via an unprecedented study combining observations and modeling of shocks in a starbust region, to show the existence of widespread low velocity shocks, that are the first direct signature of the formation of the massive molecular cloud from which massive stars form.These results are an important step connecting, via dynamical processes, the formation of molecular clouds to the formation of massive stars.

Page generated in 0.5147 seconds