Spelling suggestions: "subject:"informationation stellaire""
11 |
Étude des conditions physiques dans les disques protoplanétaires par interférométrie. Théorie, instrumentation et premières observations.Malbet, Fabien 26 October 2007 (has links) (PDF)
Les étoiles se forment lors de l'effondrement de nuages de gaz et de poussière. Dans l'environnement proche de l'étoile naissante la matière se concentre dans un plan équatorial que l'on appelle disque protoplanétaire. Les astronomes pensent que les planètes se forment au sein de cette masse de gaz et de poussière orbitant autour de l'étoile. Pour sonder ces disques à des échelles correspondant aux orbites des futures planètes, il convient d'observer dans l'infrarouge à très haute résolution spatiale. L'interférométrie infrarouge est donc un outil idéal pour étudier les conditions physiques des disques protoplanétaires. Dans ce mémoire, je décris les premiers pas de l'interférométrie infrarouge, depuis la mise au point des petits interféromètres PTI et IOTA jusqu'à la construction de l'instrument AMBER au foyer de l'interféromètre du VLT. Je décris aussi les résultats d'une piste de recherche technologique particulièrement attrayante dans le cas de l'interférométrie infrarouge et issue des technologies des autoroutes de l'information: l'optique intégrée appliquée à la combinaison de plusieurs faisceaux en astronomie. Je montre ensuite comment à partir des observations obtenues à partir de ces instruments, il est possible de contraindre la physique des disques autour des étoiles jeunes. Grâce à la résolution spectrale nouvellement disponible sur ces instruments, pour la première fois nous pouvons séparer des phénomènes physiques aussi différents que l'accrétion de matière sur l'étoile et l'éjection de particules par des vents dont l'origine précise est encore mal connue. Les résultats présentés dans ce mémoire ont été obtenus principalement à partir d'observations sur les systèmes jeunes FU Ori et MWC 297 effectuées par AMBER sur le VLTI, mais aussi par les petits interféromètres infrarouges PTI et IOTA. Je développe aussi les travaux de modélisation de la structure verticale des disques associés afin de montrer la richesse des renseignements obtenus. Finalement je trace les contours d'un programme de recherche qui permettra tout d'abord de maximiser le retour astrophysique sur un instrument comme le VLTI, puis d'obtenir de premières images interférométriques de ces environnements circumstellaires. Je propose aussi la réalisation d'un instrument de seconde génération qui permettra de fournir des images interférométriques détaillées de ces sources compactes par synthèse d'ouverture.
|
12 |
Modélisation des disques protoplanétaires<br />Vers une compréhension de leur évolutionPinte, Christophe 27 October 2006 (has links) (PDF)
Les disques de poussière et de gaz autour des étoiles jeunes sont très probablement les lieux de naissance des planètes. Les détails de l'évolution de ces disques vers des systèmes planétaires restent cependant très mal compris. Cette thèse aborde l'étude de la phase de poussière des environnements circumstellaires, à partir de laquelle se formeront les planètes, avec pour objectif d'obtenir des contraintes quantitatives sur les processus d'évolution des disques. <br /><br /> Les moyens d'observations actuels permettent d'étudier les disques avec un niveau de détail sans précédent et fournissent des informations essentielles sur les premières étapes de la formation planétaire : la croissance des grains de poussière par coagulation et leur sédimentation vers le plan du disque. Afin d'interpréter les propriétés observées des disques, nous avons développé un code de transfert radiatif qui permet de modéliser de manière cohérente les images en lumière diffusée et/ou émission thermique, les cartes de polarisation et les distributions spectrales d'énergie des disques protoplanétaires.<br /><br /> Dans un second temps, le code a été utilisé pour modéliser les données multi-longueurs d'onde et multi-techniques de plusieurs disques entourant des étoiles T Tauri : IM Lup, IRAS 04158+2805 et GG Tau. Une approche multi-paramétrique a permis de contraindre précisément les paramètres des disques. Nous avons ainsi mis en évidence et quantifié une croissance et une sédimendation des grains de poussière, qui témoignent de l'évolution de la poussière, dans deux de ces disques : IM Lup et GG Tau alors que les analyses du disque de IRAS 04158+2805 suggèrent au contraire que la poussière n'a que peu évolué dans ce dernier.<br /><br /> Le couplage du code de transfert radiatif avec un code hydrodynamique nous a permis de prédire les signatures observationnelles de la sédimentation et de la migration radiale des grains. L'application de ces résultats à l'anneau circumbinaire de GG Tau donne un bon accord avec les observations et démontre le potentiel de ce type de modélisation pour contraindre les processus physiques qui règnent au sein des disques.<br /> Enfin, des études du processus d'accrétion magnétosphérique, de disques autour de naines brunes et d'étoiles Herbig Ae/Be ainsi que de disques plus évolués (disques de débris) ont permis d'initier un travail de modélisation systématique d'un nombre croissant de disques afin de démarrer une analyse statistique des propriétés des disques, à différentes échelles spatiales et en fonction de la masse de l'objet central et de l'état d'évolution du système.
|
13 |
Etoiles massives les plus jeunes des Nuages de Magellan : Les HEBs et leur environnementMeynadier, Frédéric 17 June 2005 (has links) (PDF)
Cette thèse est consacrée à l'étude des «blobs à haute excitation»<br />(HEBs), phase caractéristique de la formation des étoiles massives,<br />encore mal connue. Ces objets sont des régions HII compactes des<br />Nuages de Magellan, observables dans le domaine optique. Par le biais d'observations à haute résolution angulaire (HST, ainsi que<br />restoration d'images de téléscopes au sol), j'ai mis en évidence les différentes populations stellaires associées aux blobs. Des<br />observations proche-IR (VLT) m'ont également permis de sonder<br />l'environnement extrêmement hétérogène de ces objets. De plus, une<br />étude spectroscopique m'a permis de définir une nouvelle catégorie de ces objets : les blobs à faible excitation (LEBs). Cet ensemble de données m'a permis de mener une étude détaillée de plusieurs<br />propriétés physiques de ces objets et souligne l'intérêt de leur étude avec les instruments en cours de réalisation (ALMA, JWST, etc.).
|
14 |
Evolution dynamique des amas stellaires jeunesBecker, Christophe 18 December 2013 (has links) (PDF)
Comprendre le processus de formation stellaire est un objectif majeur en astronomie. Sur ce sujet les observations ne donnent que très peu d'information, et les modèles numériques sont donc naturellement privilégiés. De tels modèles s'attachent à suivre la dynamique du gaz, sous l'effet de processus physique variés, ce qui nécessite un temps de calcul très important et ne permet pas de modéliser l'évolution au delà de 0.2 Myr environ. Or les résultats observationnels sont essentiellement issus du champ galactique proche, des amas évolués, voire des regions jeunes ou associations d'étoiles, dont l'âge peut varier de 1 Myr à quelques Gyr. Par conséquent, il est nécessaire pour comparer les résultats des modèles aux observations de comprendre ce qu'il se passe durant cet intervalle de temps. La formation stellaire tend à produire des étoiles en groupes, à partir de l'effondrement gravitationnel d'un nuage moléculaire turbulent. A mesure que les étoiles se forment, le gaz est éjecté et l'évolution est dominée par les interactions gravitationnelles. Suivre l'évolution sous l'effet de ces interactions est couramment utilisé afin de contraindre les modèles et de mieux comprendre l'origine des populations stellaires observées. Les étoiles se forment en sous-groupes ou structures hiérarchisées, qui peuvent ensuite fusionner pour donner des amas stellaires proche des amas ouverts, ou au contraire finir en associations distinctes. Dans ma thèse, je me suis intéressé à l'évolution dynamique de petits groupes d'étoiles, jusqu'alors peu étudiés par rapport aux groupes à 1000 ou 10^4 étoiles. J'ai simulé l'évolution de groupes à N < 100, dans le but d'en étudier la dynamique d'un point de vue statistique, grâce notamment au grand nombre de simulations effectuées, et afin d'identifier les signatures observationnelles propres à une situation initiale donnée. A partir d'un grand nombre de configurations initiales (avec N=20, 50, 100, un rayon typique de 0.025 pc à 1 pc) et 500 simulations par configurations, j'ai étudié l'évolution dynamique de groupes composés d'étoiles de même masse ou comprenant un spectre de masse, et sans population de binaire initiale. L'évolution de tels groupes s'est révélée similaire à celle de groupes plus grands, mais avec une phase d'effondrement plus rapide et surtout moins prononcée. Je décris le comportement moyen menant à une lente expansion de l'amas, ainsi qu'une voie d'évolution très différente, apparaissant dans 17% des cas étudiés, où l'amas est complètement dispersé suite à l'éjection d'une binaire centrale serrée. J'ai également recherché dans quelle mesure les données en densité et en vitesse 3D pouvaient permettre d'identifier l'état dynamique initial d'un groupe. L'utilisation de ces seules données suffisait dans certain cas à déterminer la densité initiale, mais elles devraient être complétées par des données concernant la population de binaire. Ce travail pourra être mis en application pour étudier l'origine dynamique d'association ou de groupes stellaires connus. Enfin, j'ai effectué un grand nombre de simulations numériques dans le but de reproduire l'état observé de l'amas eta Chamaeleontis par pure évolution dynamique à partir de conditions initiales standards. Cette association présente des caractéristiques d'amas évolué, telle que son spectre de masse pauvre en objets de faible masse et l'absence de binaires larges. Je montre que ces propriétés ne peuvent pas être reproduites uniquement par la dynamique, et sont donc les traces d'un processus de formation non standard.
|
15 |
Complex organic molecules in solar-type star forming regions / Molécules organiques complexes dans les régions de formation d'étoiles de type solaireAl-Edhari, Ali Jaber 19 October 2016 (has links)
Le but de la présente thèse est l'étude de la compléxité moléculaire dans les régions de formation stellaires. Cette thèse s'axe sur deux classes de molécule aux caractéristiques prébiotiques : les molécules organiques complexes et les cyanopolyynes.Dans ce contexte, j'ai analysé des données d'un seul échantillon de relevés spec- traux en exploitant des codes de transfert radiatif à l'équilibre thermodynamique local (LTE) et/ou non-LTE pour deux sources : une proto-étoile de type solaire dans un environnement calme (IRAS 16293-2422) et un proto-ama constitué de proto-étoile de type solaire (OMC2-FIR4).L'objectif est de trouver des similar- ités et des différences entre ces deux cas.J'ai utilisé des données issu de deux relevés spectraux : TIMASSS (The IRAS16293-2422 Millimeter And Submilimeter Spectral Survey) réalisés en 2011 (Caux et al. 2011), et ASAI(Astrochemical Surveys At IRAM) réalisés pen- dant la période 2013-2015 (eg Lopez-Sepulcre et al.2015). J'ai extrais les lignes (identification et intensité intégrée) en utilisant le paquet disponible publique- ment : CASSIS (Centre d'Analyse Scientifique de Spectres Infrarouges et Sub- millimetrique). Pour finir, j'ai utilisé le paquet GRAPES (GRenoble Analysis of Protostellar Envelope Spectral) afin de modéliser la distribution spectrale énergétique de ligne (SLED) des molécules détectées, mais aussi afin d'estimer leurs abondances à travers l'envelope de IRAS16293 et du coeur chaud OMC2- FIR4.Les principaux résultats de la thèse sont :1. Le premier recensement complet des molecules organiques complexes (COMs) dans IRAS162932. La première détéction de COMs dans l'enveloppe froide d'une proto-étoile de type solaire (IRAS16293-2422) supportant l'idée qu'un méchanisme de formation, relativement efficace pour les COMs détectées, doit exister en phase gazeuse froide.3. La découverte d'une fine corrélation entre le diméthyle-éther (DME) et le méthyle-formate (MF) suggère une relation mère fille entre ces deux espèces.4. La detection de formamide, espèce avec un très fort potentiel prébiotique, dans plusieurs protoétoiles incluant IRAS16293-2422 et OMC2-FIR4.5. Le recensement complet des cyanopolyynes dans IRAS16293 et OMC2- FIR4 avec la détection de HC3N, HC5N, DC3N et pour OMC2-FIR4: le C13 isotopologue du HC3N cyanopolyynes.Ces résultats sont le sujet principal de deux publications (Jaber et al.2014, ApJ; Lopez-Sepulcre, Jaber et al.2015,MNRAS), un article accepté (Jaber et al., A & A) et un article à soumettre (Jaber et al. A & A). / The present PhD thesis goal is the study of the molecular complexity in solar type star forming regions. It specifically focuses on two classes of molecules with a pre-biotic value, the complex organic molecules and the cyanopolyynes.At this scope, I analyzed data from single-dish spectral surveys by means of non-LTE or/and non-LTE radiative transfer codes in two sources, a solar type protostar in an isolated and quiet environment (IRAS16293-2422) and a proto-cluster of solar type protostars (OMC2-FIR4). The goal is to find similarities and differences between these two cases.I used data from two spectra surveys: TIMASSS (The IRAS16293-2422 Millimeter And Submillimeter Spectral Survey), which has been carried out in 2011 (Caux et al. 2011), and ASAI (Astrochemical Surveys At IRAM), which has been carried out in 2013-2015 (e.g. Lopez-Sepulcre et al. 2015).I extracted the lines (identification and integrated intensity) by means of the publicly available package CASSIS (Centre dAnalyse Scientifique de Spectres Infrarouges et Submillimtriques).Finally, I used the package GRAPES (GRenoble Analysis of Protostellar Envelope Spectra) to model the Spectral Line Energy Distribution (SLED) of the detected molecules, and to estimate their abundance across the envelope and hot corino of IRAS16293-2422 and OMC2-FIR4, respectively.The major results of the thesis are:1) The first full census of complex organic molecules (COMs) in IRAS16293-2422;2) The first detection of COMs in the cold envelope of a solar type protostar (IRAS16293-2422), supporting the idea that a relatively efficient formation mechanism for the detected COMs must exist in the cold gas phase;3) The discovery of a tight correlation between the dimethyl ether (DME) and methyl format (MF), suggesting a mother-daughter relationship;4) The detection of formamide, a species with a very high pre-biotic value, in several protostars, included IRAS16293-2422 and OMC2-FIR4;5) The full census of the cyanopolyynes in IRAS16293-2422 and OMC2-FIR4, with the detection of HC3N and HC5N, DC3N and, for OMC2-FIR4, the 13C isotopologue of HC3N cyanopolyynes.These results are the focus of two published articles (Jaber et al. 2014, ApJ; Lopez-Sepulcre, Jaber et al. 2015, MNRAS), one accepted article (Jaber et al., A&A) and a final article to be submitted (Jaber et al., A&A).
|
16 |
Evolution dynamique des amas stellaires jeunes / Dynamical evolution of young stellar clustersBecker, Christophe 18 December 2013 (has links)
Comprendre le processus de formation stellaire est un objectif majeur en astronomie. Sur ce sujet les observations ne donnent que très peu d'information, et les modèles numériques sont donc naturellement privilégiés. De tels modèles s'attachent à suivre la dynamique du gaz, sous l'effet de processus physique variés, ce qui nécessite un temps de calcul très important et ne permet pas de modéliser l'évolution au delà de 0.2 Myr environ. Or les résultats observationnels sont essentiellement issus du champ galactique proche, des amas évolués, voire des regions jeunes ou associations d'étoiles, dont l'âge peut varier de 1 Myr à quelques Gyr. Par conséquent, il est nécessaire pour comparer les résultats des modèles aux observations de comprendre ce qu'il se passe durant cet intervalle de temps. La formation stellaire tend à produire des étoiles en groupes, à partir de l'effondrement gravitationnel d'un nuage moléculaire turbulent. A mesure que les étoiles se forment, le gaz est éjecté et l'évolution est dominée par les interactions gravitationnelles. Suivre l'évolution sous l'effet de ces interactions est couramment utilisé afin de contraindre les modèles et de mieux comprendre l'origine des populations stellaires observées. Les étoiles se forment en sous-groupes ou structures hiérarchisées, qui peuvent ensuite fusionner pour donner des amas stellaires proche des amas ouverts, ou au contraire finir en associations distinctes. Dans ma thèse, je me suis intéressé à l'évolution dynamique de petits groupes d'étoiles, jusqu'alors peu étudiés par rapport aux groupes à 1000 ou 10^4 étoiles. J'ai simulé l'évolution de groupes à N < 100, dans le but d'en étudier la dynamique d'un point de vue statistique, grâce notamment au grand nombre de simulations effectuées, et afin d'identifier les signatures observationnelles propres à une situation initiale donnée. A partir d'un grand nombre de configurations initiales (avec N=20, 50, 100, un rayon typique de 0.025 pc à 1 pc) et 500 simulations par configurations, j'ai étudié l'évolution dynamique de groupes composés d'étoiles de même masse ou comprenant un spectre de masse, et sans population de binaire initiale. L'évolution de tels groupes s'est révélée similaire à celle de groupes plus grands, mais avec une phase d'effondrement plus rapide et surtout moins prononcée. Je décris le comportement moyen menant à une lente expansion de l'amas, ainsi qu'une voie d'évolution très différente, apparaissant dans 17% des cas étudiés, où l'amas est complètement dispersé suite à l'éjection d'une binaire centrale serrée. J'ai également recherché dans quelle mesure les données en densité et en vitesse 3D pouvaient permettre d'identifier l'état dynamique initial d'un groupe. L'utilisation de ces seules données suffisait dans certain cas à déterminer la densité initiale, mais elles devraient être complétées par des données concernant la population de binaire. Ce travail pourra être mis en application pour étudier l'origine dynamique d'association ou de groupes stellaires connus. Enfin, j'ai effectué un grand nombre de simulations numériques dans le but de reproduire l'état observé de l'amas eta Chamaeleontis par pure évolution dynamique à partir de conditions initiales standards. Cette association présente des caractéristiques d'amas évolué, telle que son spectre de masse pauvre en objets de faible masse et l'absence de binaires larges. Je montre que ces propriétés ne peuvent pas être reproduites uniquement par la dynamique, et sont donc les traces d'un processus de formation non standard. / Understanding the star formation process is a key issue in astronomy. Since direct observation provide only very limited information, this issue is investigated by models. Such models need to take into account complex physical processes while following the gas dynamics, so that simulations need a lot of time to run and do not follow the star formation process for longer than 0.2 Myr. The best known observational results concerns the field population, evolved open clusters or younger clusters or associations, which are between 1 Myr and a few Gyr old. Therefore in order to compare the results from models to known observations, we need to bridge the gap between the two. Star formation appears to produce groups of stars from the collapse of turbulent molecular clouds. As stars form, the gas is progressively ejected from the cluster, and the evolution is dominated by gravitational interactions. Following the dynamical evolution of a group of star using N-Body codes is a standard way used to constraint the models and understand the origin of the different populations. Star formation may produce sub-structure or small groups that merge to form bigger entities, or end up as loose association. In my thesis I focused on the dynamics of small groups, that have not been investigated as thoroughly as 1000 or 10^4 star groups. I performed N-Body simulations of small stellar groups, with N<100, in order to study their dynamics using a statistical approach, made possible by running a large number of simulations, and to find some observational signatures of given initial conditions. This approach enable to take full account of stochastic effects due to dynamical interactions. Using a large number of initial configurations (with N=20, 50, 100, a typical radius from 0.025 pc to 1 pc) and a sample of 500 simulations per configuration, I looked at equal mass groups as well as groups having a mass spectrum, without any binary initially. Such small groups show similar evolution to bigger groups, but with faster and less pronounced collapse phase. I described the average behaviour of slow expansion of the cluster, and an alternative evolution, occurring with 17% probability, that ended in the complete dissolution of the group due to ejection of a central binary. Searching for a way to identify the initial configuration from observational measure, I looked at the complementarity of density and 3D velocity and was able to show that it could be sufficient in some cases to determine the initial density. Further investigations are needed to take into account the information on the binary population and will be used to investigate the formation of known associations or young regions. Finally, I ran a large number of simulations, aiming at reproducing the observed state of the eta Chamaeleontis from standard initial conditions and pure dynamical evolution. This association properties are consistent with a dynamical evolved cluster, namely low-mass object poor and having only tight binaries. I showed that these properties cannot be reproduced with pure dynamical evolution from standard initial mass function and binary population, meaning that its particular features must have been pristine.
|
17 |
Zooming in on star formation in the brightest galaxies of the early universe discovered with the Planck and Herschel satellites / Zoom sur la formation stellaire au sein des galaxies les plus brillantes de l'univers jeune découvertes avec les satellites Planck et HerschelCañameras, Raoul 26 September 2016 (has links)
Les galaxies amplifiées par lentillage gravitationnel fort offrent une opportunité exceptionnelle pour caractériser la formation stellaire intense au sein des galaxies poussiéreuses les plus distantes. Dans les cas les plus favorables, il est possible d'étudier les mécanismes qui régissent la formation stellaire jusqu'aux échelles des régions de formation d'étoiles individuelles. Les alignements fortuits entre ces galaxies actives et des structures d'avant-plan produisant des facteurs d'amplification par lentillage gravitationnel >> 10 restent néanmoins très rares. L'échantillon des Planck's Dusty GEMS (Gravitationally Enhanced subMillimeter Sources), découvert par le relevé de ciel complet du satellite Planck dans le domaine sub-millimétrique, contient onze galaxies à haut décalage spectral extrêmement brillantes. Leurs densités de flux à 350 microns se situent entre 300 et 1000 mJy, au-delà de la plupart des sources lentillées précédemment découvertes par les relevés en infrarouge lointain et sub-millimétrique. Six d'entre elles dépassent la limite en complétude à 90% du catalogue de sources ponctuelles détectées par Planck (PCCS), indiquant qu'elles sont parmi les plus brillantes sources lointaines sélectionnées par leur formation stellaire intense. Cette thèse s'intègre dans le suivi multi-longueur d'onde de cet échantillon exceptionnel, destiné à sonder les propriétés globales des sources d'arrière-plan et à contraindre les configurations de lentillage. Premièrement, j'utilise de l'imagerie et de la spectroscopie en visible et en infrarouge proche et moyen pour caractériser les structures formant la lentille et pour construire des modèles de lentillage gravitationnel complets. J'en déduis que les onze GEMS sont effectivement alignées avec des surdensités de matière en avant-plan, soit des galaxies massives et isolées, soit des groupes ou amas de galaxies. Ces objets amplifiants contiennent des populations d'étoiles évoluées et âgées de plusieurs milliards d'années, indiquant qu'il s'agit de galaxies précoces. De plus, la modélisation détaillée de l'effet de lentillage vers les GEMS suggère que les amplifications atteignent systématiquement des facteurs > 10, et > 20 pour certaines lignes de visée. Deuxièmement, nous observons dans les domaines infrarouge lointain et millimétrique pour caractériser les sources d'arrière-plan. Les données en interférométrie de l'IRAM et du SMA à des résolutions inférieures à la seconde d'arc montrent que les GEMS ont des morphologies très déformées, preuve de fortes distorsions gravitationnelles. J'obtiens des températures de poussières de 33 à 50 K et des luminosités atteignant 2x10^14 luminosités solaires en infrarouge lointain, sans corriger du facteur d'amplification. La relation entre températures de poussières et luminosités infrarouge confirme également que, pour une température donnée, les GEMS sont plus brillantes que les galaxies similaires non lentillées. Je conclus qu'à ces longueurs d'onde, le chauffage des poussières semble être dominé par l'activité de formation stellaire avec une contamination par d'éventuels noyaux actifs systématiquement inférieure à 30%. Nous trouvons des décalages vers le rouge compris entre 2.2 et 3.6 grâce à la détection d'au moins deux raies d'émission du gaz atomique ou moléculaire par source. Finalement, je cible les trois sources lentillées de l'échantillon ayant les propriétés les plus remarquables. En particulier, la plus brillante d'entre elles s'avère être un sursaut présentant des densités de formation stellaire proches de la limite d'Eddington, et permet de sonder la naissance des étoiles dans ses phases les plus extrêmes. / Strongly gravitationally lensed galaxies offer an outstanding opportunity to characterize the most intensely star-forming galaxies in the high-redshift universe. In the most extreme cases, one can probe the mechanisms that underlie the intense star formation on the scales of individual star-forming regions. This requires very fortuitous gravitational lensing configurations offering magnification factors >> 10, which are particularly rare toward the high-redshift dusty star-forming galaxies. The Planck's Dusty GEMS (Gravitationally Enhanced subMillimeter Sources) sample contains eleven of the brightest high-redshift galaxies discovered with the Planck sub-millimeter all-sky survey, with flux densities between 300 and 1000 mJy at 350 microns, factors of a few brighter than the majority of lensed sources previously discovered with other surveys. Six of them are above the 90% completeness limit of the Planck Catalog of Compact Sources (PCCS), suggesting that they are among the brightest high-redshift sources on the sky selected by their active star formation. This thesis comes within the framework of the extensive multi-wavelength follow-up programme designed to determine the overall properties of the high-redshift sources and to probe the lensing configurations. Firstly, to characterize the intervening lensing structures and calculate lensing models, I use optical and near/mid-infrared imaging and spectroscopy. I deduce that our eleven GEMS are aligned with intervening matter overdensities at intermediate redshift, either massive isolated galaxies or galaxy groups and clusters. The foreground sources exhibit evolved stellar populations of a few giga years, characteristic of early-type galaxies. Moreover, the first detailed models of the light deflection toward the GEMS suggest magnification factors systematically > 10, and > 20 for some lines-of-sight. Secondly, we observe the GEMS in the far-infrared and sub-millimeter domains in order to characterize the background sources. The sub-arcsec resolution IRAM and SMA interferometry shows distorded morphologies which definitively confirm that the eleven sources are strongly lensed. I obtain dust temperatures between 33 and 50 K, and outstanding far-infrared luminosities of up to 2x10^14 solar luminosities before correcting for the gravitational magnification. The relationship between dust temperatures and far-infrared luminosities also confirms that the GEMS are brighter than field galaxies at a given dust temperature. I conclude that dust heating seems to be strongly dominated by the star formation activity with an AGN contamination systematically below 30%. We find secure spectroscopic redshifts between 2.2 and 3.6 for the eleven targets thanks to the detection of at least two CO emission lines per source. Finally, I focus on the three gravitationally lensed sources showing the most remarkable properties including the brightest GEMS, a maximal starburst with star formation surface densities near the Eddington limit.
|
18 |
Formation d'étoiles et d'amas stellaires dans les collisions de galaxiesBelles, Pierre-Emmanuel 28 November 2012 (has links) (PDF)
Les fusions sont un évènement essentiel dans la formation des grandes structures de l'Univers; elles jouent un rôle important dans l'histoire de formation et l'évolution des galaxies. Outre une transformation morphologique, les fusions induisent d'importants sursauts de formation d'étoiles. Ces sursauts sont caractérisés par des Efficacités de Formation Stellaire (EFS) et des Taux de Formation Stellaire Spécifiques (TFSS), i.e., respectivement, des Taux de Formation Stellaire (TFS) par unité de masse gazeuse et des TFS par unité de masse stellaire, plus élevés que ceux des galaxies spirales. A toutes les époques cosmiques, les galaxies à sursaut de formation d'étoiles sont des systèmes particuliers, en dehors de la séquence définie par les galaxies spirales. Nous explorons l'origine du mode de formation stellaire par sursaut, à travers trois systèmes in interaction: Arp 245, Arp 105 et NGC 7252. Nous avons combiné des observations JVLA haute résolution de la raie à 21-cm, traçant le gaz Hi diffus, avec des observations GALEX dans l'UV, traçant les jeunes régions de formation d'étoiles. Nous sommes ainsi en mesure de sonder les conditions physiques locales du Milieu InterStellaire (MIS) pour des régions de formation d'étoiles indépendantes, et d'étudier la transformation du gaz atomique en gaz dense dans différents environnements. Le rapport SFR/HI apparaît bien plus élevé dans les régions centrales que dans les régions externes, indiquant une fraction de gaz dense plus élevée (ou une fraction de gaz HI moins élevée) dans les régions centrales. Dans les régions externes des systèmes, i.e., les queues de marées, où le gaz est dans une phase principalement atomique, nous observons des rapports SFR/ HI plus élevés que dans les environnements standards dominés par le HI, i.e., les régions externes des disques de spirales et les galaxies naines. Ainsi, notre analyse révèle que les régions externes de fusions sont caractérisées par des EFS élevées, par comparaison au mode de formation stellaire standard. Observer des fractions de gaz dense élevées dans les systèmes en interaction est en accord avec les prédictions des simulations numériques; ceci résulte d'une augmentation de la turbulence du gaz durant une fusion. La fusion affecte les propriétés de formation stellaire du système probablement à toutes les échelles, depuis les grandes échelles, avec une turbulence augmentant globalement, jusqu'aux petites échelles, avec des modifications possibles de la fonction de masse initiale. A partir d'une simulation numérique haute résolution d'une fusion majeure entre deux galaxies spirales, nous analysons les effets de l'interaction des galaxies sur les propriétés du MIS à l'échelle des amas stellaires. L'accroissement de la turbulence du gaz explique probablement la formation de Super Amas Stellaire dans le système. Notre étude de la relation SFR-HI dans les fusions de galaxies sera complétée par des données HI haute résolution pour d'autres systèmes, et poussée vers des échelles spatiales encore plus petites.
|
19 |
Formation Stellaire Aux Échelles Des GalaxiesBoissier, Samuel 30 November 2012 (has links) (PDF)
La formation des étoiles est au coeur du cycle d'évolution des galaxies. A partir de leur réservoir de gaz (et de son remplissage éventuel par accrétion ou fusion), des étoiles se forment à un taux appelé par définition le taux de formation Stellaire (soit SFR pour Star Formation Rate en anglais), avec un impact énorme sur de nombreux aspects de l'évolution des galaxies. Cette HDR présente tout d'abord le formalisme de la formation stellaire (SFR, IMF), quelques suggestions théoriques concernant les phénomènes affectant le SFR sur diverses échelles spatiales dans les galaxies, les méthodes de détermination empirique du SFR à partir d'observables. Une partie importante est dédiée aux "lois" de formation stellaire (e.g. loi de Schmidt) sur diverses échelles (loi locale, loi radiale, loi globale). Finalement, la dernière partie concerne les plus grandes échelles (évolution du SFR "cosmique" et effet d'environnement.
|
20 |
Analyse multi-échelle des champs magnétiques dans des nuages moléculaires à structures filmentairesPoidevin, Frédérick 07 1900 (has links)
Associée à d'autres techniques observationnelles, la polarimétrie dans le visible ou dans le proche infrarouge permet d'étudier la morphologie des champs magnétiques à la périphérie de nombreuses régions de formation stellaire. A l'intérieur des nuages molécualires la morphologie des champs est connue par polarimétrie submillimétrique, mais rarement pour les mêmes régions. Habituellement, il manque une échelle spatiale intermédiaire pour pouvoir comparer correctement la morphologie du champ magnétique galactique avec celle située à l'intérieur des nuages moléculaires. -- Cette thèse propose les moyens nécessaires pour réaliser ce type d'analyse multi-échelle afin de mieux comprendre le rôle que peuvent jouer les champs magnétiques dans les processus de formation stellaire. La première analyse traite de la région GF 9. Vient ensuite une étude de la morphologie du champ magnétique dans les filaments OMC-2 et OMC-3 suivie d'une analyse multi-échelle dans le complexe de nuages moléculaires Orion A dont OMC-2 et OMC-3 font partie. -- La synthèse des résultats couvrant GF 9 et Orion A est la suivante. Les approches statistiques employées montrent qu'aux grandes échelles spatiales la morphologie des champs magnétiques est poloïdale dans la région GF 9, et probablement hélicoïdale dans la région Orion A. A l'échelle spatiale des enveloppes des nuages moléculaires, les champs magnétiques apparaissent alignés avec les champs situés à leur périphérie. A l'échelle spatiale des coeurs, le champ magnétique poloïdal environnant la région GF 9 est apparemment entraîné par le coeur en rotation, et la diffusion ambipolaire n'y semble pas effective actuellement. Dans Orion A, la morphologie des champs est difficilement détectable dans les sites actifs de formation d'OMC-2, ou bien très fortement contrainte par les effets de la gravité dans OMC-1. Des effets probables de la turbulence ne seont détectés dans aucune des régions observées. -- Les analyses multi-échelles suggèrent donc qu'indépendamment du stade évolutif et de la gamme de masse des régions de formation stellaires, le champ magnétique galactique subit des modifications de sa morphologie aux échelles spatiales comparables à celles des coeurs protostellaires, de la même façon que les propriétés structurelles des nuages moléculaires suivent des lois d'autosimilarité jusqu'à des échelles comparables à celles des coeurs. / Together with other observational methods, visible and near infrared polarimetry can help tu understand the morphology of magnetic fields in the neighborhood of several star-forming regions. inside molecular clouds, this morphology can be deduced with the help of submm polarimetry but rarely in the same regions. When both observational methods are used for the same region, there is a gap in the spatial scales to correctly compare the Galactic magnetic field with the magnetic field probed inside the clouds. -- This thesis proposes the necessary steps to make this type of multi-scle analysis and to better understand the role that can be played by magnetic fields in stellar formation regions. The GF 9 region is the first region analysed with this method. Then, a study of the morphology of the magnetic field located in filamentary molecular clouds OMC-2 and OMC-3 is presented, followed by a multi-scale analysis of the Orion A region, the molecular cloud complex in which these clouds are embedded. -- The results covering both regions can be summarized as follows. it is statistically shown that the large scale morphology of the field is poloidal in the GF 9 region, and probably toroidal in the Orion A complex. On the smaller spatial scale of the envelopes of the clouds, the magnetic fields appear to be aligned with the fields at their periphery. On the spatial scale of the cores, the poloidal magnetic field located in the vicinity of GF 9 is apparently twisted and entrained by the rotation of the core and ambipolar diffusion does not seem to be effective at the present time. In Orion A, the morphology of the fields can hardly be probed in active sites of stellar formation in OMC-2, and is strongly constrained by the effects of gravity in OMC-1. There is no evidence for turbulence in all the observed regions. -- All in all, the multiscale analyses suggest that independently of the evolutionary state or of the range in mass of the star-forming regions, the magnetic field morphology is significantly affected on spatial scales similar to those of cores, in the same way that molecular clouds properties remain self-similar down to the spatial scales similar to those of cores. / Conseil de recherche en sciences naturelles et en génie du Canada
|
Page generated in 0.3178 seconds