• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Antiautomorphismes d'algèbres et objets reliés.

Cortella, Anne 04 June 2010 (has links) (PDF)
Ce mémoire porte sur l'étude des antiautomorphismes d'algèbres et en particulier sur les antiautomorphismes linéaires d'algèbres centrales simples (sur un corps commutatif). Si l'algèbre est une algèbre de matrices, alors un tel antiautomorphisme est l'adjonction pour une forme bilinéaire. Ainsi la classification des antiautomorphismes linéaires (resp. de type II) à isomorphisme près est une généralisation de celle des formes bilinéaires (resp. sesquilinéaires) à similitude près. Dans la première partie, on définit la notion d'asymétrie d'une forme sesquilinéaire, et on étudie les éléments d'une algèbre d'endomorphismes qui sont une asymétrie. La notion de produit de formes sesquilinéaires conduit à une théorie de Morita pour les algèbres à antiautomorphismes, qui permet de généraliser la notion de somme orthogonale connue pour les involutions d'algèbres centrales simples aux algèbres à antiautomorphisme Morita équivalentes avec asymétrie. Dans la deuxième partie, après avoir rappelé comment l'asymétrie permet d'obtenir une classification des formes bilinéaires, on généralise au cas non déployé linéaire la notion d'asymétrie et on explique comment on peut espérer obtenir de bons résultats en étudiant l'involution induite sur le centralisateur de l'asymétrie et la pseudo-involution linéaire associée à cette asymètrie. L'étude du principe de Hasse pour les similitudes de formes bilinéaires conduit natu- rellement au calcul de certains groupes de Tate-Schafarevich de tores algébriques de type normique. Ceci permet, dans une troisième partie, de donner des contre-exemples à ce principe sur des corps de nombres, ainsi qu'une interprétation de type corps de classe à l'obstruction à ce principe. Ce type de calculs pour d'autres tores normiques permet de démontrer qu'ils ne sont pas stablement rationnels. Ce résultat permet alors de déterminer les groupes algébriques simples dont le tore générique est rationnel, et délimite donc les cas pour lesquels l'étude du tore générique donne la rationalité du groupe. La quatrième partie est dédiée à la définition et à l'étude d'invariants des algèbres centrales simples à antiautomorphismes qui généralisent ceux donnant de bons résultats de classification pour les involutions : le discriminant, l'algèbre de Clifford et la forme trace. On y développe alors les résultats espérés en petite dimension cohomologique ou en petit degré.

Page generated in 0.0672 seconds