• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 7
  • 4
  • 2
  • Tagged with
  • 26
  • 26
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Elastodynamic Analysis of Vehicle Suspension Uprights

Mehta, Harsh 12 June 2018 (has links)
The ability of a Formula SAE sports car to negotiate a turn in a race is influenced by many parameters which include car's overall geometry, its shape, weight distribution, type of suspension used, spring and shock absorber characteristics that are used in the tire properties, static and dynamic loading. Steady-state cornering implies that the forces acting on the vehicle are unchanging for a given time. The suspension uprights form a connection between the wheel assembly and the suspension linkages. The criticality of the upright is that it is considered an un-suspended body, but in fact, it is subjected to very high stresses. The dynamic load imposed on the vehicle from various road conditions, cornering, braking and suspension assembly constraints generate stress on the upright body. The equations of motion generally govern vehicle dynamics. For a kinematic and rigid body dynamics analysis, a multibody dynamics (MBD) approach is popular. The results of the dynamic analysis yield internal loads which are used to analyze suspension components for structural stiffness and strength. Automotive companies with relatively lower structural loads have made the MBD approach popular because it is supposed to be computationally less expensive. Elastodynamics is an alternative approach to solving dynamics equations while considering the components to be elastic. This approach can capture the inertial and elastic responses of the components and the load path with varying positions of the components in a mechanism. In this research, a quarter-car suspension is modeled in a finite element code (Abaqus®), focusing on the vehicle upright but still modeling the connections and interactions of the quarter-car suspension system of a FSAE vehicle. The BEAM element modeling used for the suspension members captures the bending response. The overall model is created by making computationally conscious decisions, debugging and refining the interactions and connections to be representative. The modeling technique to create elastodynamic models is explored and established with a versatile set of suspension components and interactions providing a good experience with finite element modeling. The models are created with incremental steps and early steps are verified with hand calculations. A further vehicle verification and validation plan is the next immediate priority to gain confidence in the model for accurate simulations which can be used to predict accurate structural and dynamic results. With extending the model capabilities and computational capabilities, a quarter-car suspension model is powerful enough to run the entire track simulations for formula races and even durability load cases for commercial vehicles. Fatigue loading and abusive test cases would be the load cases to investigate possible failure modes. The quarter-car suspension model is a framework with different interactions, connections, components, boundary conditions and loads that are representative for different suspension configurations in different vehicles. The best practices of this modeling exercise are established and scalability to defeature or add details while preserving the connection behavior is achieved. / Master of Science
12

The design and development of a vehicle chassis for a Formula SAE competition car / Izak Johannes Fourie

Fourie, Izak Johannes January 2014 (has links)
The Formula SAE is a student based competition organised by SAE International where engineering students from a university design, develop and test a formula-style race car prototype to compete against other universities. The competition car needs to satisfy the competition rules set out by the organisers. The competition strives to stimulate original, creative problem solving together with innovative engineering design practices. In any race environment, the primary goal is always to be as competitive as possible. Due to the competitive nature of motor sport, vehicle components need to withstand various and severe stresses. The components of a race car vehicle are responsible for the vehicle’s handling characteristics and reliability. The chassis is a crucial and integral component of a Formula SAE competition car, primarily responsible for the vehicle’s performance characteristics. The chassis is the structural component that accommodates all the other components. A Formula SAE chassis is a structure that requires high torsional stiffness, low weight as well as the necessary strength properties. In this study, multiple Formula SAE chassis were designed and developed using computer aided design software. Each concept’s torsional stiffness, weight and strength properties were tested using finite element analysis software. The different concepts consisted of different design techniques and applications. All the concepts were analysed and assessed, leading to the identification of an acceptable prototype. The prototype was manufactured for experimental tests. The designed chassis complied with the Formula SAE rules and regulations. The weight, torsional stiffness and strength characteristics of the designed chassis frame were also favourable compared to accepted standards for Formula SAE chassis frames. The manufactured chassis was prepared for experimental tests in order to validate the simulation results produced by the finite element analysis. The torsional stiffness, weight and strength were experimentally determined and the results were compared with the corresponding simulations results. The comparison of the experimental and simulated results enabled the validation of the finite element analysis software. The study draws conclusions about the use of computer aided design and finite element analysis software as a design tool for the development of a Formula SAE chassis. Closure about the study is provided with general conclusions, recommendations and research possibilities for future studies. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2014
13

The design and development of a vehicle chassis for a Formula SAE competition car / Izak Johannes Fourie

Fourie, Izak Johannes January 2014 (has links)
The Formula SAE is a student based competition organised by SAE International where engineering students from a university design, develop and test a formula-style race car prototype to compete against other universities. The competition car needs to satisfy the competition rules set out by the organisers. The competition strives to stimulate original, creative problem solving together with innovative engineering design practices. In any race environment, the primary goal is always to be as competitive as possible. Due to the competitive nature of motor sport, vehicle components need to withstand various and severe stresses. The components of a race car vehicle are responsible for the vehicle’s handling characteristics and reliability. The chassis is a crucial and integral component of a Formula SAE competition car, primarily responsible for the vehicle’s performance characteristics. The chassis is the structural component that accommodates all the other components. A Formula SAE chassis is a structure that requires high torsional stiffness, low weight as well as the necessary strength properties. In this study, multiple Formula SAE chassis were designed and developed using computer aided design software. Each concept’s torsional stiffness, weight and strength properties were tested using finite element analysis software. The different concepts consisted of different design techniques and applications. All the concepts were analysed and assessed, leading to the identification of an acceptable prototype. The prototype was manufactured for experimental tests. The designed chassis complied with the Formula SAE rules and regulations. The weight, torsional stiffness and strength characteristics of the designed chassis frame were also favourable compared to accepted standards for Formula SAE chassis frames. The manufactured chassis was prepared for experimental tests in order to validate the simulation results produced by the finite element analysis. The torsional stiffness, weight and strength were experimentally determined and the results were compared with the corresponding simulations results. The comparison of the experimental and simulated results enabled the validation of the finite element analysis software. The study draws conclusions about the use of computer aided design and finite element analysis software as a design tool for the development of a Formula SAE chassis. Closure about the study is provided with general conclusions, recommendations and research possibilities for future studies. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2014
14

Návrh přední nápravy formule SAE / Design of formula SAE front axle

Honzík, Tomáš January 2008 (has links)
My thesis will be aimed at front axle design. I am going to design the assembly of the front axle in the program ADAMS by MSC. I am going to observe and record most of cinematic changes of the car such as change of position of vehicle roll centre ,wheel camber, geometry adjustment , wheel toe-in measuring and other necessary data. The final report is going to include strength calculation of particular axle parts. I am also going to solve the axle stabilizer including strength calculation.
15

Estudo da influência da rigidez do quadro na dirigibilidade de um veículo de competição Fórmula SAE em ambiente multicorpos / Study of the influence of the frame stiffness in handling with a Formula SAE vehicle in multibody interface

Ericsson, Luis Gustavo Sigward 19 December 2008 (has links)
O objetivo deste trabalho é estudar a influência da rigidez do quadro na dirigibilidade de um veículo de competição fórmula SAE (protótipo E2-M, da equipe EESC-USP) em ambiente multicorpos com o software Adams/Car. Um modelo contendo os subsistemas de suspensão, direção, pneumático, powertrain, barra estabilizadora e quadro foi construído em ambiente multicorpos com componentes modelados como corpos rígidos. Posteriormente foram elaborados três modelos de quadros flexíveis com diferentes valores de rigidez torcional para substituir o quadro rígido. Estes foram obtidos através da análise modal com o auxílio do método dos elementos finitos. Para comparação da dinâmica lateral dos modelos, típicas manobras do estudo de dirigibilidade foram consideradas tais como rampsteer, step-steer e single lane change. Os resultados obtidos foram de aceleração lateral e velocidade de guinada. Pelas condições avaliadas, pode-se concluir que a rigidez torcional de um quadro para o protótipo E2-M pode estar entre 700 e 1500 N.m/o. Essa variação de rigidez representou 5 kg de massa no quadro. Porém deve-se fazer uma avaliação modal com a massa suspensa calibrada para verificar se não existe acoplamento de modos e freqüências com outros subsistemas. / This dissertation is intended to study the influence of frame stiffness in handling of a Formula SAE vehicle (E2-M prototype from EESC-USP Formula SAE team) in multibody with Adams/Car software. A model containing the subsystems of suspension, steering, tires, powertrain, frame and stabilizing bar was built considering rigid bodies. Subsequently, three models of flexible frames were developed with different values of torsional stiffness to replace the rigid frame. They were obtained through modal analysis with the aid of finite element method. For the handling investigation, maneuvers such as ramp-steer, step-steer and single lane change were considered. The results evaluated were lateral acceleration and yaw velocity. According to results, the torsional stiffness for the E2-M prototype can be between 700 and 1500 Nm/o. But an eigenvalue analyses is also necessary to verify if there is no coupling of modes of the calibrated sprung mass with other subsystems.
16

Control System and Simulation Design for an All-Wheel-Drive Formula SAE Car Using a Neural Network Estimated Slip Angle Velocity

Beacock, Benjamin 12 September 2012 (has links)
In 2004, students at the University of Guelph designed and constructed an all-wheel-drive Formula SAE vehicle for competition. It utilized an electronically-controlled, hydraulic-actuated limited slip center coupling from Haldex Traction Ltd, to transfer torque to the front wheels. The initial control system design was not comprehensively conceived, so there was a need for a thoroughly developed control system for the all-wheel-drive actuator augmented with commonly available sensors and a low cost controller. This thesis presents a novel all-wheel-drive active torque transfer controller using a neural network estimated slip angle velocity. This controller specifically targets a racing vehicle by allowing rapid direction changes for maneuverability but damping slip angle changes for increased controllability. The slip angle velocity estimate was able to track the actual simulated value it was trained against with excellent phase matching but with some offsets and phantom spikes. Using the estimated slip angle velocity for control realized smooth control output, excellent stability, and a fast turn-in yaw response on par with rear-wheel-drive configurations. A full vehicle simulation with software-in-the-loop testing for control software was also developed to aid the system design process and avoid vehicle run time for tuning. This design flow should significantly decrease development time for controls algorithm work and help increase innovation within the team.
17

Small engine performance limits - turbocharging, combustion or design

Attard, William January 2007 (has links) (PDF)
Growing concerns about interruption to oil supply and oil shortages have led to escalating global oil prices. In addition, increased public acceptance of the global warming problem has prompted car manufacturers to agree to carbon emission targets in many regions including most recently, the Californian standards. Other legislating bodies are sure to follow this lead with increasingly stringent targets. As a result of these issues, spark ignition engines in their current form will need significant improvements to meet future requirements. One technically feasible option is smaller capacity downsized engines with enhanced power that could be used in the near term to reduce both carbon emissions and fuel consumption in passenger vehicles.This research focuses on exploring the performance limits of a 0.43 liter spark ignited engine and defining its operating boundaries. Limiting factors such as combustion, gas exchange and component design are investigated to determine if they restrict small engine performance. The research gives direction to the development of smaller gasoline engines and establishes the extent to which they can contribute to future powertrain fuel consumption reduction whilst maintaining engine power at European intermediate class requirements.
18

Estudo da influência da rigidez do quadro na dirigibilidade de um veículo de competição Fórmula SAE em ambiente multicorpos / Study of the influence of the frame stiffness in handling with a Formula SAE vehicle in multibody interface

Luis Gustavo Sigward Ericsson 19 December 2008 (has links)
O objetivo deste trabalho é estudar a influência da rigidez do quadro na dirigibilidade de um veículo de competição fórmula SAE (protótipo E2-M, da equipe EESC-USP) em ambiente multicorpos com o software Adams/Car. Um modelo contendo os subsistemas de suspensão, direção, pneumático, powertrain, barra estabilizadora e quadro foi construído em ambiente multicorpos com componentes modelados como corpos rígidos. Posteriormente foram elaborados três modelos de quadros flexíveis com diferentes valores de rigidez torcional para substituir o quadro rígido. Estes foram obtidos através da análise modal com o auxílio do método dos elementos finitos. Para comparação da dinâmica lateral dos modelos, típicas manobras do estudo de dirigibilidade foram consideradas tais como rampsteer, step-steer e single lane change. Os resultados obtidos foram de aceleração lateral e velocidade de guinada. Pelas condições avaliadas, pode-se concluir que a rigidez torcional de um quadro para o protótipo E2-M pode estar entre 700 e 1500 N.m/o. Essa variação de rigidez representou 5 kg de massa no quadro. Porém deve-se fazer uma avaliação modal com a massa suspensa calibrada para verificar se não existe acoplamento de modos e freqüências com outros subsistemas. / This dissertation is intended to study the influence of frame stiffness in handling of a Formula SAE vehicle (E2-M prototype from EESC-USP Formula SAE team) in multibody with Adams/Car software. A model containing the subsystems of suspension, steering, tires, powertrain, frame and stabilizing bar was built considering rigid bodies. Subsequently, three models of flexible frames were developed with different values of torsional stiffness to replace the rigid frame. They were obtained through modal analysis with the aid of finite element method. For the handling investigation, maneuvers such as ramp-steer, step-steer and single lane change were considered. The results evaluated were lateral acceleration and yaw velocity. According to results, the torsional stiffness for the E2-M prototype can be between 700 and 1500 Nm/o. But an eigenvalue analyses is also necessary to verify if there is no coupling of modes of the calibrated sprung mass with other subsystems.
19

Konstrukční návrh nábojů kol vozidla / Vehicle Wheel Hubs Design

Mohyla, Daniel January 2018 (has links)
This diploma thesis deals with design of a wheel hub assembly for a Formula Student vehicle. First part of this thesis is dedicated as an introduction to the Formula Student competition and serves as a summary of design solutions for wheel hubs with a focus on open wheel vehicles. Second part deals with description of a problem and summarizes necessary knowledge and information to solve given problem. Third part is devoted to CAD modelling in software PTC Creo parametric. This model is then analysed using finite element method. Last part of this thesis is a discussion about achieved results and discussion about further potential improvements is carried out.
20

Sací potrubí jednoválcového motoru / Intake Manifold for Single-cylinder Engine

Pavličík, Lukáš January 2014 (has links)
The aim of this diploma thesis is to create a thermodynamic computational model of a single cylinder IC engine for the Formula SAE car. The single cylinder SI engine KTM 500 EXC is considered as a powertrain unit. The intake manifold of the serial enduro motorcycle is modified according to the Formula SAE 2014 rules. Analysis of the one dimensional flow is performed by using Lotus engine simulation software.

Page generated in 0.0437 seconds