Spelling suggestions: "subject:"formule dde dynkin"" "subject:"formule dde dynkins""
1 |
Pénalisations de marches aléatoires / Penalization of random walksDebs, Pierre 09 November 2007 (has links)
Le sujet de ma thèse est la théorie de la pénalisation, développée originalement par B .Roynette, P. Vallois et M. Yor dans le cas du mouvement brownien. En quelques mots, cela consiste à favoriser des trajectoires de mesure nulle en mettant un poids sur la mesure de probabilité. La première partie de ma thèse est la contrepartie discrète de leur travail: Soit (Omega,(Xn,,n>=0),Fn,n>=0, P) la marche aléatoire symétrique où Fn est la filtration canonique. Pour des fonctionnelles positives et adaptées G:N*Omega->R+, j'étudie pour tout n dans N, pour tout An dans Fn, la limite quand p tend vers l'infini de la quantité: Ex[An Gp] / Ex[Gp] Quand cette limite existe, elle est égale à Q(An):=Ex[An Mn] où (Mn,n>=0) est une martingale positive non uniformément intégrable. La définition de Q induit une nouvelle probabilité sur (Omega,F) et on étudie alors (Xn,n>=0) sous Q. Dans une seconde partie, j'essaye d'étendre cette théorie à un processus de naissance et de mort. Rappelons que ces processus ont la propriété de ne changer d'état que vers les états les plus proches et cela après un temps aléatoire exponentiel. Plus précisément, je pénalise un processus de naissance et de mort transient par le nombre de visites dans l'état 0 (ce qui est comme une pénalisation par le temps local). Quand je force ce processus à visiter une infinité de fois l'état 0, je prouve que, sous la nouvelle mesure de probabilité induite par pénalisation, le processus se comporte comme un processus de naissance et de mort récurrente. / The subject of my thesis is the theory of penalisation originaly developed by B .Roynette, P. Vallois and M. Yor in the case of the brownian motion. In a few words, it consists in putting a weight on the probability measure to favorise trajectories with probability measure equals to zero. The first part of my thesis is the discrete counterpart of their work : let (Omega,(Xn,,n>=0),Fn,n>=0, P) the symmetric random walk and Fn is the canonical filtration. For some adapted and positive functionals G:N*Omega->R+, I study for all n in N, for all An in Fn, the limit when p goes to infinity of the quantity: Ex[An Gp] / Ex[Gp] When this limit exists, it is equal to Q(An):=Ex[An Mn] where (M_n,n>=0) is a positive non uniformly integrable martingale. The definition of Q induces a new probability on (Omega, F) and then I study (Xn,n>=0) under Q. In a second part, I try to expend this theory to birth and death Markov processes. Recall that these processes have the property that, after an exponential random length of time, only transitions to neighbouring states are possible. Precisely, I penalize the distribution of the transient birth and death process by the number of visits at the state 0 (which is like local time type penalization). When I force the process to visit an infinitely often the state zero, I prove that, under the new probability measure induced by penalization, the process behaves as a recurrent birth and death process.
|
2 |
Pénalisations de marches aléatoiresDebs, Pierre 09 November 2007 (has links) (PDF)
Le sujet de ma thèse est la théorie de la pénalisation, développée originalement par B .Roynette, P. Vallois et M. Yor dans le cas du mouvement brownien. En quelques mots, cela consiste à favoriser des trajectoires de mesure nulle en mettant un poids sur la mesure de probabilité.<br />La première partie de ma thèse est la contrepartie discrète de leur travail:<br />Soit $\left(\Omega,\,\left(X_n,\,\mathcal F_n,\,n\geq0\right),\mathcal F_\infty=\bigvee_{n\geq0}\mathcal F_n,\,\p\right)$ la marche aléatoire symétrique où $\mathcal F_n$ est la filtration canonique.<br />Pour des fonctionnelles positives et adaptées $G:\mathbb N\times\Omega\time\Omega\rightarrow\mathbb R^+$, j'étudie $\forall n\in\mathbb N,\,\forall\Lambda_n\in\mathcal F_n$, la limite quand $p\rightarrow\infty$ de la quantité:<br />\begin{equation*}<br />\frac{\e_x[\mathds{1}_{\Lambda_n}G_p]}{\e_x[G_p]}<br />\end{equation*}<br />Quand cette limite existe, elle est égale à $Q\left(\Lambda_n\right):=\e_x[\mathds{1}_{\Lambda_n}M_n]$ où $\left(M_n,n\geq0\right)$ est une martingale positive non uniformément intégrable. La définition de $Q$ induit une nouvelle probabilité sur $\left(\Omega,\,\mathcal F_\infty\right)$ et on étudie alors $\left(X_n,n\geq0\right)$ sous $Q$.<br />Dans une seconde partie, j'essaye d'étendre cette théorie à un processus de naissance et de mort. Rappelons que ces processus ont la propriété de ne changer d'état que vers les états les plus proches et cela après un temps aléatoire exponentiel.<br />Plus précisément, je pénalise un processus de naissance et de mort transient par le nombre de visites dans l'état 0 (ce qui est comme une pénalisation par le temps local). Quand je force ce processus à visiter une infinité de fois l'état 0, je prouve que, sous la nouvelle mesure de probabilité induite par pénalisation, le processus se comporte comme un processus de naissance et de mort récurrente.}
|
3 |
Processus de Markov diffusifs par morceaux: outils analytiques et numériquesBect, Julien 18 June 2007 (has links) (PDF)
Ce travail de thèse a pour objet l'étude de modèles markoviens qui résultent de la prise en compte d'incertitudes dans des systèmes possédant une dynamique hybride : entrées bruitées, dynamique mal connue, ou évènements aléatoires par exemple. De tels modèles, parfois qualifiés de Systèmes Hybrides Stochastiques (SHS), sont utilisés principalement en automatique et en recherche opérationnelle.<br /><br />Nous introduisons dans la première partie du mémoire la notion de processus diffusif par morceaux, qui fournit un cadre théorique général qui unifie les différentes classes de modèles "hybrides" connues dans la littérature. Différents aspects de ces modèles sont alors envisagés, depuis leur construction mathématique (traitée grâce au théorème de renaissance pour les processus de Markov) jusqu'à l'étude de leur générateur étendu, en passant par le phénomène de Zénon.<br /><br />La deuxième partie du mémoire s'intéresse plus particulièrement à la question de la "propagation de l'incertitude", c'est-à-dire à la manière dont évolue la loi marginale de l'état au cours du temps. L'équation de Fokker-Planck-Kolmogorov (FPK) usuelle est généralisée à diverses classes de processus diffusifs par morceaux, en particulier grâce aux notions d'intensité moyenne de sauts et de courant de probabilité. Ces résultats sont illustrés par deux exemples de modèles multidimensionnels, pour lesquels une résolution numérique de l'équation de FPK généralisée a été effectuée grâce à une discrétisation en volumes finis. La comparaison avec des méthodes de type Monte-Carlo est également discutée à partir de ces deux exemples.
|
Page generated in 0.0558 seconds