• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 3
  • Tagged with
  • 33
  • 33
  • 14
  • 10
  • 10
  • 9
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Method for Membrane Characterization Employing Reliable Forward Osmosis Experimental Data

Reyes Lombardo, Sofia 17 September 2021 (has links)
Forward osmosis (FO) is an osmotically driven process that uses a high concentration draw solution to pull water across a semipermeable membrane from a feed solution. Wastewater, seawater, or other contaminated water sources may be used as a feed solution. In FO, the final product is not clean water but a diluted draw solution. However, FO may be combined with another process, e.g. reverse osmosis (RO). The resulting hybrid process offers advantages compared to the RO process in, for example, seawater desalination. Thin-film composite (TFC) membranes have been used in pressurized processes such as RO due to their thick porous support layer and their ability to endure high hydrostatic pressures. However, the presence of a thick porous layer is detrimental for FO processes. It is responsible for the internal concentration polarization (ICP) inside the membrane, reducing the osmotic driving force and the overall water flux. The characterization of membranes in FO applications is key for understanding how different intrinsic parameters affect membrane performance. In this work, a previously developed methodology for characterizing TFC membranes was improved. Experimental data was obtained from a laboratory-scale FO system, and the experimental data was used to determine three intrinsic transport parameters, namely the water permeance, the salt permeance and the porous layer structural parameter. With this method, the characterization of TFC membranes can be achieved based exclusively on FO data. A sensitivity analysis has highlighted the impact of the intrinsic transport parameters on an FO membrane performance.
2

Evaluation of Forward Osmosis Spacer Performance for Produced Water Treatment

AlQattan, Jawad 04 1900 (has links)
Forward osmosis (FO) is one of the emerging membrane technologies in a field of water treatment. The potential advantages of a FO process are lower energy consumption, and higher fouling reversibility compared to other membrane-based desalting technologies, e.g., reverse osmosis and nanofiltration, due to low working pressure. Despite high fouling reversibility, membrane fouling can be still a major obstacle in the FO process. Thus, the employment of spacers can help in enhancing water flux and minimizing membrane fouling. However, the current design of spacers has a potential problem related to spacer fouling, thereby deteriorating the FO process. Therefore, the spacers were examined with the different designs (i.e., hole-type and twisted spacers) fabricated via a 3D-printer for the treatment of shale gas produced water (SGPW). To evaluate the performance of the spacers, either synthetic SGPW or Milli-Q water as feed solution (FS) and different concentration of sodium chloride as a draw solution (DS) were employed. Water flux, reverse solute flux (RSF) and reverse solute flux selectivity (RSFS) were firstly measured with increasing DS concentration with Milli-Q water as FS and a 1-hole spacer exhibited the highest water flux. When increasing FS concentration to 0.3 M NaCl, hole-type spacers exhibited higher water flux than twisted spacers. Therefore, 0-hole and hole-type spacers were selected for SGPW treatment. During SGPW treatment, severe flux decline was observed with all experiments due to the formation of BaSO4 scaling. Flux decline of 1- hole spacers was slightly severer than 0-hole. This might be because scales were broken by high shear force and more covered the membrane surface as shown in SEM images. However, interestingly, hole-type spacers showed no change of pressure drop during SGPW treatment while the pressure drop of the 0-hole spacer increased. Holes of spacers can prevent the accumulation of foulants on the spacer surface, thereby resulting in no change of pressure drop. Physical cleaning with no spacer and the 0-hole spacer showed less than 95% cleaning efficiency while hole-type spacers could enhance the cleaning efficiency and achieve 100%. This might be because the micro-jet induced by holes of the spacer can more readily destroy and remove foulants on the surface.
3

Structural Study and Modification of Support Layer for Forward Osmosis Membranes

Shi, Meixia 06 1900 (has links)
Water scarcity is a serious global issue, due to the increasing population and developing economy, and membrane technology is an essential way to address this problem. Forward osmosis (FO) is an emerging membrane process, due to its low energy consumption (not considering the draw solute regeneration). A bottleneck to advance this technology is the design of the support layer for FO membranes to minimize the internal concentration polarization. In this dissertation, we focus on the structural study and modification of the support layer for FO membranes. Firstly, we digitally reconstruct different membrane morphologies in 3D and propose a method for predicting performance in ultrafiltration operations. Membranes with analogous morphologies are later used as substrate for FO membranes. Secondly, we experimentally apply substrates with different potentially suitable morphologies as an FO support layer. We investigate their FO performance after generating a selective polyamide layer on the top, by interfacial polymerization. Among the different substrates we include standard asymmetric porous membranes prepared from homopolymers, such as polysulfone. Additionally block copolymer membrane and Anodisc alumina membrane are chosen based on their exceptional structures, with cylindrical pores at least in part. 3D digitally reconstructed porous substrates, analogous to those investigated for ultrafiltration, are then used to model the performance in FO operation. Finally, we analyze the effect of intermediate layers between the porous substrate and the interfacial polymerized layer. We investigate two materials including chitosan and hydrogel. The main results are the following. Pore-scale modeling for digital membrane generation effectively predicts the velocity profile in different layers of the membrane and the performance in UF experiments. Flow simulations confirm the advantage of finger-like substrates over sponge-like ones, when high water permeance is sought. Cylindrical pores are advantageous for mass transfer. Block copolymer substrates have cylindrical pores in the top layer and very regular pore pattern at the surface. The Anodisc alumina membrane has cylindrical pores from top to bottom. Both substrates were experimentally tested for FO application successfully. A Darcy permeability higher than 1E-20 m2 for the intermediate layer would be necessary in order to facilitate the water flow.
4

Membrane filtration : fouling and cleaning in forward osmosis, reverse osmosis, and ultrafiltration membranes

Siddiqui, Farrukh Arsalan January 2017 (has links)
A comparison of fouling in osmotically driven processes with that in pressure driven processes is the main focus of the thesis. Forward osmosis (FO) and reverse osmosis (RO) have received considerable attention for water treatment and seawater desalination. This research compared the nature of fouling in FO mode with that in RO starting with the same initial flux in connection with cleaning effects and then comparing to those in ultrafiltration membranes. In all cases, with cleaning as an integral part, the extent of fouling reversibility, and the question whether a critical flux could be determined were examined. The work during the first phase (undertaken at Oxford) quantified the removal of reversible fouling through rinsing by cold and hot water for a range of concentrations using the foulants dextran and carboxymethyl cellulose. The flux-TMP relationship was conventionally compared to that of the clean water flux. The later phase (at Singapore) compared the fouling in FO and RO by alginate in terms of multiple parameters using cellulose tri acetate (CTA) and thin film composite (TFC) membranes. Silica and alginate were selected as model foulants. Whilst experimental water flux profiles in the present study did not exhibit significant differences in trend between FO and RO fouling, foulant resistance for FO was found to be increasingly greater than for RO with the progression of the fouling tests. This was further corroborated by membrane autopsies post fouling tests; both foulant mass deposition density and specific foulant resistance for FO were greater than for RO. The analysis clearly revealed that FO is essentially more prone to fouling than RO which was presumably due to less flux decline in FO (or greater average flux) as compared to that in RO in result of ICP-self compensation effect which is opposite to the prevailing claim in the literature. Additionally, the present study did not find evidence that hydraulic pressure in RO has a role in foulant layer compaction. FO membrane fouling by real waters was the focus of the final phase of the research at SMTC. Pilot scale FO experiments were conducted on spiral wound CTA membrane with treated waste water obtained from a NEWater factory (Singapore) as the feed. In the second stage, experiments were repeated at bench scale with membrane coupons taken from the spiral wound membranes used earlier. The key finding was that the mass transfer coefficients in the Spiral-Wound module were around 50% lower than the corresponding values in the flat sheet unit and this severely limited the fluxes. The reason could be attributed to strong internal concentration polarisation in the former, where tightly wound spacers act to increase the structural parameter.
5

Modeling the effect of spacers and biofouling on forward osmosis performance

Mosqueira Santillán, María José 11 1900 (has links)
Currently, the most utilized desalination technology is reverse osmosis (RO), where a membrane is used as a physical barrier to separate the salts from the seawater, using high hydraulic pressure as driving force. A major problem in RO systems is biofouling, caused by severe growth of bacterial biofilms. Both, the need of an external energy input, as well as biofouling, impose a high cost on RO operation. Forward osmosis (FO) is an alternative membrane process that uses an osmotic pressure difference as driving force. FO uses a concentrated draw solution to generate high osmotic pressure, which extracts water across a semi permeable membrane from a feed solution. One of the main advantages of FO is the limited amount of external energy required to extract water from the feed solution. The objective of this research is the assessment of the impact of spacers, separating the membrane sheets, and biofouling on the FO system performance. This type of studies allow the optimization of membrane devices and operational conditions. For this, a two dimensional numerical model for FO systems was developed using computational fluid dynamics (CFD). This model allowed the evaluation of the impact of (i) spacers and (ii) biofilm, and (iii) the combined impact of spacers and biofilm on the performance of FO systems. The results obtained showed that the presence of spacers improved the performance of FO systems. Cavity configuration spacer gave the higher water flux across the membrane in clean systems; whereas for biofouled systems, the submerged configuration showed a better performance. In absence of spacers, the thickness or amount of biofilm is inversely proportional with the water flux. Furthermore, membrane surface coverage of the biofilm is more important than the amount of biofilm in terms of the impact on the performance. The numerical model can be adapted with other parameters (e.g. membrane and spacer thickness, feed and draw solution, solution concentration, etc.) to predict the impact of biofilm on FO systems under different experimental conditions. The use of numerical modeling may contribute to faster development of economic viable FO based desalination systems.
6

Forward osmosis using organic cationic draw solutions for water recovery

Hamad, Mohammed J.A. January 2017 (has links)
Forward Osmosis (FO) is an emerging technology which has potential to operate with minimum energy input. High performance of FO systems depend on the availability of a suitable Draw Solution. Different types of Draw Solutions have been proposed, however; choosing a suitable one is still a developing area within the FO field. There is an urgent need to explore new materials in order to develop an efficient FO system. The current study aims at investigating the performance of three Draw Solutions namely, L-Alanine, DADMAC and PolyDADMAC as osmotic agents for FO. These organic cationic solutions can be used as extraction agents of water from poorer quality organic solutes such as fumaric acid solution produced in a continuous flow microbial fermentation process. The performance of the three Draw Solutions was evaluated by measuring the water flux and reverse solute diffusion at different concentrations. The viability of reconcentration of the diluted Draw Solutions was also investigated using Nanofiltration system. The performance and the efficiency of the Draw Solutions were studied via two separated bench scale systems of FO and Nanofiltration. Both Cellulose Triacetate (CTA) and Thin Film Composite (TFC) aquaporin protein FO membranes were employed under different orientations in FO set up operated for 24 hours or longer. In this study, NF90 membrane was used for reconcentration the Draw Solutions. A series of experiments were conducted to obtain the best water flux and reverse solute diffusion under various influencing operating conditions. The experiments were designed to achieve three objectives, i.e. (i) optimum operating conditions for FO system, (ii) optimum operating conditions for the reconcentration system, and (iii) implementation of the optimum operating conditions of the FO system for water recovery from a fumaric acid solution produced by a simulated industrial fermentation process. In the initial stage, L-Alanine Draw Solution demonstrated that it was the most viable agent for FO. It was established that L-Alanine Solution at 0.085 g/mL concentration achieved the highest initial water flux and the lowest reverse solute diffusion through both CTA and TFC aquaporin protein FO membranes. In the second stage, a Nanofiltration system was proven to be effective in the reconcentration of the diluted L-Alanine Draw Solution. The average rejection of L-Alanine ions achieved by NF90 membrane was 96.00%. Drawing on the previous results, the third stage was used to investigate the viability of the FO system in water recovery from fumaric acid solution produced by continuous microbial fermentation process using L-Alanine as a Draw Solution. The reduction of water content of the fumaric acid solution made it to concentrate by 26.00% and 19.80% in 32_ and 17_, respectively. Consequently, FO technology is an effective way to concentrate a fumaric acid solution produced by continuous microbial fermentation process. Based on the results, it is recommended that LAlanine should be proposed in the FO process according to its reliability and effectiveness as a viable draw agent. TFC aquaporin protein membrane is also recommended to be used in recover the water from fumaric acid solution produced by fermentation processes. Further studies should be done to investigate the viability of FO in water recovery from advanced application such as downstream bioprocessing. / Dissertation (MEng)--University of Pretoria, 2017. / Chemical Engineering / MEng / Unrestricted
7

Produced Water Pretreatment Prior to Filtration with Forward Osmosis and Membrane Distillation Integrated System

Alqulayti, Abdullah 07 1900 (has links)
The simultaneous treatment of different produced water streams with the forward osmosis membrane distillation hybrid system (FO-MD) has been suggested recently. This work investigates the need for pretreatment of produced water prior to filtration with FO-MD in order to reduce the level of fouling and scaling in the system. The desalter effluent (DE) stream was selected as FO feed solution, and the water oil separator (WO) stream was used as FO draw solution/MD feed solution, and a significant flux decline was observed in FO and MD within the first 5 hours of operations. SEM and EDX analysis indicated that the formation of scale layer on both membranes was the main reason for the sharp flux decline. Silica was the major contributor to the scaling of the support layer of the FO membrane. While the scaling layer on MD membrane consisted mainly of CaSO4 crystals with some deposition of Silica. Therefore, electrocoagulation (EC) was selected for the pretreatment of produced water to target the removal of Ca, SiO2 and SO4 ions in order to reduce the likelihood of inorganic fouling in FO-MD. The different parameters of EC, namely, the current density, electrolysis time, and initial pH were tested at a wide range of values of 7-70 mA/cm2 , 10-60 minutes, 5-9, respectively. calcium and sulfate ions were not effectively removed at the relatively high applied current density of 70 mA/cm2 , while high removal of silica was achieved even at low applied current densities. The optimum conditions of EC for silica removal were found to be 7 mA/cm2 for the current density and 10 minutes for the electrolysis time which resulted in a 97% removal of silica. it was found that due to pretreatment, the average FO and MD fluxes increased by 49% (9.93 LMH) and 39% (8.55 LMH), respectively. Therefore, even though EC did not show promising results in terms of the removal of calcium and sulfate, efficient silica removal was achieved with minimum energy requirements which suggests that it could have a potential to be integrated with the FO-MD hybrid system for the treatment and reclamation of produced water.
8

Polybenzimidazole Membranes Functionalized to Increase Hydrophilicity, Increase Surface Charge, and Reduce Pore Size for Forward Osmosis Applications

Flanagan, Michael F. 13 December 2012 (has links)
No description available.
9

Resource Recovery By Osmotic Bioelectrochemical Systems Towards Sustainable Wastewater Treatment

Qin, Mohan 14 November 2017 (has links)
Recovering valuable resources from wastewater will transform wastewater management from a treatment focused to sustainability focused strategy, and creates the need for new technology development. An innovative treatment concept - osmotic bioelectrochemical system (OsBES), which is based on cooperation between bioelectrochemical systems (BES) and forward osmosis (FO), has been introduced and studied in the past few years. An OsBES can accomplish simultaneous treatment of wastewater and recovery of resources such as nutrient, energy, and water (NEW). The cooperation can be accomplished in either an internal (osmotic microbial fuel cells, OsMFC) or external (microbial electrolysis cell-forward osmosis system, MEC-FO) configuration. In OsMFC, higher current generation than regular microbial fuel cell (MFC) was observed, resulting from the lower resistance of FO membrane. The electricity generation in OsMFC could greatly inhibit the reverse salt flux. Besides, ammonium removal was successfully demonstrated in OsMFC, making OsMFCs a promising technology for "NEW recovery" (NEW: nutrient, energy and water). For the external configuration of OsBES, an MEC-FO system was developed. The MEC produced an ammonium bicarbonate draw solute via recovering ammonia from synthetic organic solution, which was then applied in the FO for extracting water from the MEC anode effluent. The system has been advanced with treating landfill leachate. A mathematical model developed for ammonia removal/recovery in BES quantitatively confirmed that the NH4+ ions serve as effective proton shuttles across cation exchange membrane (CEM). / Ph. D.
10

Exploring Forward Osmosis Systems for Recovery of Nutrients and Water

Wu, Zhenyu 19 January 2018 (has links)
Livestock wastewater contains a large amount of nutrients that are available for recovery. In this study, a proof of concept process based on forward osmosis (FO) was proposed and investigated for in-situ formation of struvite from digested swine wastewater. This FO system took advantage of a drawback reverse solute flux (RSF) and used the reversed-fluxed Mg^{2+} for struvite precipitation, thereby accomplishing recovery of both water and nutrient. With 0.5 M MgCl2 as a draw solution, high purity struvite formed spontaneously in the feed solution and the water flux through the FO membrane reached 3.12 LMH. The precipitated struvite was characterized and exhibited a similar composition to that of commercial struvite. The FO system achieve >50% water recovery, >99% phosphate recovery (given sufficient magnesium supply), and >93% ammonium nitrogen removal from the digested swine wastewater. The recovered products (both struvite and water) could potentially generate a value of 1.35 $ m^{-3}. The results of this study have demonstrated the feasibility of nutrient recovery from livestock wastewater facilitated by FO treatment. / Master of Science

Page generated in 0.0471 seconds