Spelling suggestions: "subject:"fourier daw"" "subject:"fourier caw""
1 |
Fenômenos de transporte em sistemas fora do equilíbrio / Transport Phenomena in Out-of-Equilibrium SystemsSantos, Pedro Henrique Guimarães dos 04 July 2017 (has links)
Fenômenos de transporte constituem um dos grandes desafios teóricos da mecânica estatística fora do equilíbrio, uma vez que a compreensão dos mecanismos microscópicos que regem tais fenômenos não está completamente estabelecida. Conduzidos, portanto, pela motivação de melhor compreender esses mecanismos, propomos nesta tese o estudo dos fenômenos de transporte através de dois modelos microscópicos em dois contextos distintos: clássico e quântico. No contexto clássico, consideramos como modelo uma cadeia de osciladores harmônicos acoplados, sujeita a um potencial local (pinning) anarmônico quártico (conhecido como modelo phi4). A cadeia está em contato, através de suas extremidades, com dois reservatórios térmicos mantidos a temperaturas distintas, e sua dinâmica é dada por um sistema de equações de Langevin. Além disso, consideramos a inclusão de um ruído conservativo que inverte aleatoriamente o sentido da velocidade de cada partícula. Nesse sistema, estudamos dois fenômenos de transporte associados à condução de calor: a Lei de Fourier e a retificação térmica. Os resultados foram obtidos numericamente através da simulação do sistema usando-se métodos de dinâmica estocástica. A partir desses resultados pudemos concluir que, tanto a validade da Lei de Fourier, quanto a presença de uma retificação finita no limite termodinâmico, estão associadas à presença do ruído conservativo na dinâmica do sistema. No contexto quântico, utilizamos como modelo de trabalho uma cadeia de spins do tipo XX posta em contato, através de suas extremidades, com dois reservatórios mantidos a diferentes temperaturas e potenciais químicos. A interação com os reservatórios foi feita através de dissipadores de Lindblad presentes na equação mestra quântica que fornece a dinâmica do sistema. Esses dissipadores são acoplados aos modos normais do hamiltoniano do modelo de forma que, no equilíbrio, o sistema termaliza corretamente para o estado de Gibbs. Além de resultados numéricos, obtivemos através de um método perturbativo, expressões analíticas para os fluxos de energia e de partículas ao longo da cadeia, verificando que ambos possuem a estrutura da fórmula de Landauer. No regime em que o acoplamento com os reservatórios é fraco, verificamos ainda que as relações de reciprocidade de Onsager entre esses fluxos são satisfeitas. / Transport phenomena are one of the great theoretical challenges of out-of-equilibrium statistical mechanics since the understanding of the microscopic mechanisms governing such phenomena is not yet fully established. To better understand these mechanisms, we propose in this thesis the study of transport phenomena through two microscopic models in two distinct contexts: classical and quantum ones. In the classical context, we considered as a working model a chain of coupled harmonic oscillators, subject to a quartic anharmonic pinning (known as the phi4 model). The chain is in contact, through its ends, with two thermal reservoirs kept at different temperatures, and its dynamics is given by a system of Langevin equations. In addition, we considered the inclusion of a conservative noise that randomly reverses the direction of the velocity of each particle. In this system, we studied two transport phenomena associated with heat conduction: the Fourier Law and the thermal rectification. The results were obtained numerically by simulating the system using stochastic dynamics methods. From these results we concluded that both the validity of the Fourier Law and the presence of a finite rectification in the thermodynamic limit are associated with the presence of the conservative noise in the system dynamics. In the quantum context, we used as a working model the XX spin chain that was put in contact, through its ends, with two reservoirs kept at different temperatures and chemical potentials. The interaction with the reservoirs was modeled through Lindblad dissipators included in the quantum master equation that describes the system dynamics. These dissipators are coupled to the normal modes of the model Hamiltonian so that, in equilibrium, the system thermalizes correctly to the Gibbs state. In addition to numerical results, we obtained through a perturbative method, analytical expressions for the energy and particle fluxes along the chain, verifying that both have the structure of the Landauer formula. In the regime where the coupling with the reservoirs is weak, we also verified that the Onsager reciprocal relations between these fluxes are satisfied.
|
2 |
Problèmes de diffusion pour des chaînes d’oscillateurs harmoniques perturbées / Diffusion problems for perturbed harmonic chainsSimon, Marielle 17 June 2014 (has links)
L'équation de la chaleur est un phénomène macroscopique, émergeant après une limite d’échelle diffusive (en espace et en temps) d’un système d'oscillateurs couplés. Lorsque les interactions entre oscillateurs sont linéaires, l'énergie évolue de manière balistique, et la conductivité thermique est infinie. Certaines non-linéarités doivent donc apparaître au niveau microscopique, si l’on espère observer une diffusion normale. Pour apporter de l'ergodicité, on ajoute à la dynamique déterministe une perturbation stochastique qui conserve l'énergie. En premier lieu nous étudions la dynamique Hamiltonienne d'un système d'oscillateurs linéaires, perturbé par un bruit stochastique dégénéré conservatif. Ce dernier transforme à des temps aléatoires les vitesses en leurs opposées. On montre que l'évolution macroscopique du système est caractérisée par un système parabolique non-linéaire couplé pour les deux lois de conservation du modèle. Ensuite, nous supposons que les oscillateurs évoluent en environnement aléatoire. La perturbation stochastique est très dégénérée, et on prouve que le champ de fluctuations de l'énergie à l'équilibre converge vers un processus d'Ornstein-Uhlenbeck généralisé dirigé par l’équation de la chaleur.Il est désormais connu que les systèmes unidimensionnels présentent une diffusion anormale lorsque le moment total est conservé en plus de l'énergie. Dans une troisième partie, on considère deux perturbations, l'une préservant le moment, l'autre détruisant cette conservation. En faisant décroître l'intensité de la seconde perturbation, on observe une transition de phase entre un régime de diffusion normale et un régime de superdiffusion. / The heat equation is known to be a macroscopic phenomenon, emerging after a diffusive rescaling of space and time. In linear systems of interacting oscillators, the energy ballistically disperses and the thermal conductivity is infinite. Since the Fourier law is not valid for linear interactions, non-linearities in the microscopic dynamics are needed. In order to bring ergodicity to the system, we superpose a stochastic energy conserving perturbation to the underlying deterministic dynamics.In the first part we study the Hamiltonian dynamics of linear coupled oscillators, which are perturbed by a degenerate conservative stochastic noise. The latter flips the sign of the velocities at random times. The evolution yields two conservation laws (the energy and the length of the chain), and the macroscopic behavior is given by a non-linear parabolic system.Then, we suppose the harmonic oscillators to evolve in a random environment, in addition to be stochastically perturbed. The noise is very degenerate, and we prove a macroscopic behavior that holds at equilibrium: precisely, energy fluctuations at equilibrium evolve according to an infinite dimensional Ornstein-Uhlenbeck process driven by the linearized heat equation.Finally, anomalous behaviors have been observed for one-dimensional systems which preserve momentum in addition to the energy. In the third part, we consider two different perturbations, the first one preserving the momentum, and the second one destroying that new conservation law. When the intensity of the second noise is decreasing, we observe (in a suitable time scale) a phase transition between a regime of normal diffusion and a regime of super-diffusion.
|
3 |
Fenômenos de transporte em sistemas fora do equilíbrio / Transport Phenomena in Out-of-Equilibrium SystemsPedro Henrique Guimarães dos Santos 04 July 2017 (has links)
Fenômenos de transporte constituem um dos grandes desafios teóricos da mecânica estatística fora do equilíbrio, uma vez que a compreensão dos mecanismos microscópicos que regem tais fenômenos não está completamente estabelecida. Conduzidos, portanto, pela motivação de melhor compreender esses mecanismos, propomos nesta tese o estudo dos fenômenos de transporte através de dois modelos microscópicos em dois contextos distintos: clássico e quântico. No contexto clássico, consideramos como modelo uma cadeia de osciladores harmônicos acoplados, sujeita a um potencial local (pinning) anarmônico quártico (conhecido como modelo phi4). A cadeia está em contato, através de suas extremidades, com dois reservatórios térmicos mantidos a temperaturas distintas, e sua dinâmica é dada por um sistema de equações de Langevin. Além disso, consideramos a inclusão de um ruído conservativo que inverte aleatoriamente o sentido da velocidade de cada partícula. Nesse sistema, estudamos dois fenômenos de transporte associados à condução de calor: a Lei de Fourier e a retificação térmica. Os resultados foram obtidos numericamente através da simulação do sistema usando-se métodos de dinâmica estocástica. A partir desses resultados pudemos concluir que, tanto a validade da Lei de Fourier, quanto a presença de uma retificação finita no limite termodinâmico, estão associadas à presença do ruído conservativo na dinâmica do sistema. No contexto quântico, utilizamos como modelo de trabalho uma cadeia de spins do tipo XX posta em contato, através de suas extremidades, com dois reservatórios mantidos a diferentes temperaturas e potenciais químicos. A interação com os reservatórios foi feita através de dissipadores de Lindblad presentes na equação mestra quântica que fornece a dinâmica do sistema. Esses dissipadores são acoplados aos modos normais do hamiltoniano do modelo de forma que, no equilíbrio, o sistema termaliza corretamente para o estado de Gibbs. Além de resultados numéricos, obtivemos através de um método perturbativo, expressões analíticas para os fluxos de energia e de partículas ao longo da cadeia, verificando que ambos possuem a estrutura da fórmula de Landauer. No regime em que o acoplamento com os reservatórios é fraco, verificamos ainda que as relações de reciprocidade de Onsager entre esses fluxos são satisfeitas. / Transport phenomena are one of the great theoretical challenges of out-of-equilibrium statistical mechanics since the understanding of the microscopic mechanisms governing such phenomena is not yet fully established. To better understand these mechanisms, we propose in this thesis the study of transport phenomena through two microscopic models in two distinct contexts: classical and quantum ones. In the classical context, we considered as a working model a chain of coupled harmonic oscillators, subject to a quartic anharmonic pinning (known as the phi4 model). The chain is in contact, through its ends, with two thermal reservoirs kept at different temperatures, and its dynamics is given by a system of Langevin equations. In addition, we considered the inclusion of a conservative noise that randomly reverses the direction of the velocity of each particle. In this system, we studied two transport phenomena associated with heat conduction: the Fourier Law and the thermal rectification. The results were obtained numerically by simulating the system using stochastic dynamics methods. From these results we concluded that both the validity of the Fourier Law and the presence of a finite rectification in the thermodynamic limit are associated with the presence of the conservative noise in the system dynamics. In the quantum context, we used as a working model the XX spin chain that was put in contact, through its ends, with two reservoirs kept at different temperatures and chemical potentials. The interaction with the reservoirs was modeled through Lindblad dissipators included in the quantum master equation that describes the system dynamics. These dissipators are coupled to the normal modes of the model Hamiltonian so that, in equilibrium, the system thermalizes correctly to the Gibbs state. In addition to numerical results, we obtained through a perturbative method, analytical expressions for the energy and particle fluxes along the chain, verifying that both have the structure of the Landauer formula. In the regime where the coupling with the reservoirs is weak, we also verified that the Onsager reciprocal relations between these fluxes are satisfied.
|
4 |
Nonequilibrium statistical mechanics of a crystal interacting with medium / Mécanique statistique hors d'équilibre d'un cristal interagissant avec un milieu continuDymov, Andrey 17 June 2015 (has links)
Dans cette thèse nous étudions des systèmes hamiltoniens de particules en interaction, où chaque particule est faiblement couplée avec son propre thermostat de type Langevin de température positive arbitraire. Les modèles peuvent être vu comme des cristaux plongés dans un milieu continue et interagissants faiblement avec ce dernier.Nous nous intéressons au transport d'énergie dans les systèmes quand les couplages des particules avec leurs thermostats tendent vers zéro simultanément avec les couplages entre eux.Nous examinons deux situations opposées, quand la mesure de Lebesgue des resonances du système de particules découplées est nulle et quand elle est pleine. Dans le premier cas, en utilisant la méthode de moyennisation stochastique, nous démontrons que dans la limite ci-dessus le comportement de l'énergie locale des particules sur des intervalles de temps longs, et dans le régime stationnaire est donné par une équation autonome stochastique, laquelle predit uniquement le transport d'énergie non hamiltonien.Dans le second cas, en utilisant la méthode de moyennisation resonante stochastique, nous prouvons que la dynamique limite de l'énergie locale est contrôlée par une équation efficace stochastique. La dernière prevoit le transport d'energie hamiltonien entre les particules. Cependant, elle n'est pas autonome pour l'énergie locale. En utilisant cette asymptotique, nous montrons que dans la limite ci-dessus le flux d'énergie hamiltonien du système satisfait des relations qui ressemblent à la loi de Fourier et à la formule de Green-Kubo (cependant, elles ne le sont pas).La plupart des résultats et convergences que nous obtenons dans la thèse sont uniformes par rapport au nombre de particules dans les systèmes, qui rend nos résultats pertinents du point de vue de la physique statistique. / In the present thesis we study Hamiltonian systems of particles with weak nearest-neighbour interaction, where each particle is weakly coupled with its own stochastic Langevin-type thermostat of arbitrary positive temperature.The models can be seen as crystals plugged in some medium and weakly interacting with it.We are interested in the energy transport through the systems when the couplings of the particles with the thermostats go to zero simultaneously with their couplings with each other.We investigate two opposite situations, when resonances of the system of uncoupled particles have Lebesgue measure zero and when they are of full Lebesgue measure.In the first case, using the method of stochastic averaging, we prove that under the limit above behaviour of the local energy of particles on long time intervals and in a stationary regime is given by an autonomous stochastic equation, which does not provide any Hamiltonian energy transport.For the second situation, using the method of resonant stochastic averaging, we show that the limiting dynamics of the local energy is governed by a stochastic effective equation. The latter provides Hamiltonian energy transport between the particles, however, is not an autonomous equation for the local energy. Using this asymptotics, we prove that under the limit above the Hamiltonian energy flow in the system satisfies some relations which resemble the Fourier law and the Green-Kubo formula (however, which are not).Most of results and convergences obtained in the thesis are uniform with respect to the number of particles in the systems, what makes our results relevant from the point of view of statistical physics.
|
5 |
Vytápění bytového domu / Heating of flat houseZajíček, Václav January 2019 (has links)
The thesis is composed of three parts - theoretical, computational and a project part. The theoretical part deals with heat sharing through conduction, flow and radiation. The computational part is focused on the overall calculation of the heating system to operate smoothly and reliably. Three gas condensing boilers are designed as a source of heat. The heating of the water is solved as a reservoir. It's source of heat is one gas condensation boiler. The project part contains a technical report and the project documentation on the stage of the implementation dossier.
|
Page generated in 0.3039 seconds