• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 527
  • 119
  • 70
  • 61
  • 54
  • 35
  • 35
  • 35
  • 35
  • 35
  • 35
  • 15
  • 9
  • 8
  • 7
  • Tagged with
  • 1083
  • 1083
  • 430
  • 368
  • 205
  • 171
  • 93
  • 84
  • 82
  • 76
  • 73
  • 73
  • 71
  • 68
  • 67
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Diamond synthesis on steel substrates using magneto-active plasma chemical vapor deposition with novel in situ FTIR spectroscopy characterization

Shahedipour, Fatemeh, January 1998 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1998. / Typescript. Vita. Includes bibliographical references (leaves 134-139). Also available on the Internet.
342

Thermal decomposition products testing with 1,1,1,2,2,4,5,5,5 nonafluoro-4-trifluoromethyl pentan-3-one (C6 F-ketone) during fire extinguishing

Ditch, Benjamin D. January 2003 (has links)
Thesis (M.S.)--Worcester Polytechnic Institute. / Keywords: clean extinguishing agent; c₆f-ketone; novec 1230; thermal decomposition products; halon alternative. Includes bibliographical references.
343

AFM-based measurement of the mechanical properties of thin polymer films and determination of the optical path length of nearly index-matched cavities / Atomic force microscopy based measurement of the mechanical properties of thin polymer films and determination of the optical path length of nearly index-matched cavities

Wieland, Christopher F., 1980- 24 September 2012 (has links)
Two technologies, immersion and imprint lithography, represent important stepping stones for the development of the next generation of lithography tools. However, although the two approaches offer important advantages, both pose many significant technological challenges that must be overcome before they can be successfully implemented. For imprint lithography, special care must be taken when choosing an etch barrier because studies have indicated that some physical material properties may be size dependent. Additionally, regarding immersion lithography, proper image focus requires that the optical path length between the lens and substrate be maintained during the entire writing process. The work described in this document was undertaken to address the two challenges described above. A new mathematical model was developed and used in conjunction with AFM nano-indentation techniques to measure the elastic modulus of adhesive, thin polymer films as a function of the film thickness. It was found that the elastic modulus of the polymer tested did not change appreciably from the value determined using bulk measurement techniques in the thickness range probed. Additionally, a method for monitoring and controlling the optical path length within the gap of a nearly index-matching cavity based on coherent broadband interference was developed. In this method, the spectrum reflected for a cavity illuminated with a modelocked Ti:Sapphire laser was collected and analyzed using Fourier techniques. It was found that this method could determine the optical path length of the cavity, quickly and accurately enough to control a servo-based feedback system to correct deviations in the optical path length in real time when coupled with special computation techniques that minimized unnecessary operations. / text
344

Application of Fourier Finite Differences and lowrank approximation method for seismic modeling and subsalt imaging

Song, Xiaolei 22 February 2013 (has links)
Nowadays, subsalt oil and gas exploration is drawing more and more attention from the hydrocarbon industry. Hydrocarbon exploitation requires detailed geological information beneath the surface. Seismic imaging is a powerful tool employed by the hydrocarbon industry to provide subsurface characterization and monitoring information. Traditional wave-equation migration algorithms are based on the one- way-in-depth propagation using the scalar wave equation. These algorithms focus on downward continuing the upcoming waves. However, it is still really difficult for conventional seismic imaging methods, which have dip limitations, to get a correct image for the edge and shape of the salt body and the corresponding subsalt structure. The dip limitation problem in seismic imaging can be solved completely by switching to Reverse-Time Migration (RTM). Unlike old methods, which deal with the one-way wave equation, RTM propagator is two-way and, as a result, it no longer imposes dip limitations on the image. It can also handle complex waveforms, including prismatic waves. Therefore it is a powerful tool for subsalt imaging. RTM involves wave extrapolation forward and backward in time. In order to accurately and efficiently extrapolate the wavefield in heterogeneous media, I develop three novel methods for seismic wave modeling in both isotropic and tilted transversely isotropic (TTI) media. These methods overcome the space-wavenumber mixed-domain problem when solving the acoustic two-way wave equation. The first method involves cascading a Fourier Transform operator and a finite difference (FD) operator to form a chain operator: Fourier Finite Differences (FFD). The second method is lowrank finite differences (LFD), whose FD schemes are derived from the lowrank approximation of the mixed-domain operator and are represented using adapted coefficients. The third method is lowrank Fourier finite differences (LFFD), which use LFD to improve the accuracy of TTI FFD mothod. The first method, FFD, may have an advantage in efficiency, because it uses only one pair of multidimensional forward and inverse FFTs (fast Fourier transforms) per time step. The second method, LFD, as an accurate FD method, is free of FFTs and in return more suitable for massively parallel computing. It can also be applied to the FFD method to reduce the dispersion in TTI case, which results in the third method, LFFD. LFD and LFFD are based on lowrank approx- imation which is a general method to handle mixed-domain operators and can be easily applied to more complicated mixed-domain operators. I show pseudo-acoustic modeling in orthorhombic media by lowrank approximation as an example. / text
345

Analysis of acoustic emission in cohesionless soil

Mathiyaparanam, Jeyisanker 01 June 2006 (has links)
Acoustic emission is a widely used nondestructive technique for identification of structural damage. The AE technique relies on transient energy waves generated by the materials during their failure. As for soils, the basic causes of acoustic emission are the mechanisms which are responsible for shearing of soils. Mobilization of shear strength within a soil itself and the interaction of the soil with the adjacent natural or construction materials are directly related to the level of acoustic emission in soils. It is envisioned that acoustic emission signals in deforming soils can be used as an early warning sign in real time landslide-monitoring systems.This thesis study uses a laboratory experimental setup to record the acoustic emission signals emitted during the shearing of cohesionless soils. Several tests were performed with different rates of shearing with parallel (horizontal) and perpendicular (vertical) placement of the AE mote- sensor with respect to the shear plane. Since the original raw signals recorded contain large amounts of noise, it is necessary to de-noise them. The current study uses wavelet and FFT to de-noise the original signals. The filtered signals obtained using wavelet analysis and FFT are compared to determine the suitability of the two techniques. The peak AE values and the time taken to observe an initial visible peak under different conditions are reported in this study. It is observed that relatively faster rates of shearing generate more AE signals compared to slower rates of shearing. In addition, the rapid shearing produces initial visible peak AE activities within a short period of time than in slow rate of shearing.
346

Investigations of open-shell open-shell interactions : NO-O₂ and NO₂-O₂ complexes

Starkey, Tony George January 2007 (has links)
This thesis details research undertaken in the investigation of the open-shell open-shell Van der Waals complexes between nitric oxide (NO) and oxygen (O<sub>2</sub>) and between nitrogen dioxide (NO<sub>2</sub> ) and oxygen (O</sub>2</sub> ). The Fourier transform microwave spectroscopy technique was used during the experimental work. Spectra were recorded for a mixture of NO and O<sub>2</sub> over the frequency range 7.0 to 18.2 GHz. Detailed ab initio calculations have been performed on the potential energy surface of both NO-O<sub>2</sub> and NO<sub>2</sub>-O<sub>2</sub> using Multi-reference Rayleigh Schrodinger Second Order Perturbation Theory. These calculations were performed for the four distinct states of NO-O<sub>2</sub>, <sup>2</sup>A", <sup>4</sup>A", <sup>2</sup>A' and <sup>4</sup>A', and for the two distinct states of NO,sub>2</sub>-O<sub>2</sub>, <sup>2</sup>A and <sup>4</sup>A. Predicted rotational spectra have been generated by modelling the systems with a rigid-rotor Hamiltonians. The effective Hamiltonians included the rotational Hamiltonian, ℋ<sub>rot</sub>, fine structure terms and hyperfine structure terms. It was not possible, for rationalizable reasons, to fit the predicted spectra for NO-O<sub>2</sub> to the experimental observations. Experimental details, calculation methods and rotational theory are discussed in the main body of the thesis. Predicted spectra, relevant calculations and other data is presented in the appendices.
347

Fourier Transform Microwave Spectroscopy of Metal-Containing Transient Molecules

Sun, Ming January 2010 (has links)
Simple organometallic molecules, especially those with a single ligand, are the desired model systems to investigate the metal-ligand interactions. For such a molecule, a quantitative relationship between the geometry and the electronic configuration would be instructive to test the existing theories and to access more complicated systems as well. As a matter of fact, microwave spectroscopy could be the best approach to address this issue by measuring the pure rotational spectrum of a metal-containing molecule. By doing so, microwave spectroscopy can provide the most reliable bond lengths and bond angles for the molecule based on the rotational constants of a set of isotopologues. On the other hand, from the fine-structure and hyperfine-structure of the spectrum, microwave spectroscopy can also describe the electronic manifold, charge distribution and bonding nature of the molecule in a quantitative way.Fourier transform microwave spectrometers have been the most popular equipment to measure the pure rotational spectrum for three decades owing to the high resolution and super sensitivity. With the advances in digital electronics and the molecular production techniques, hyperfine structures of metal-containing molecules can be easily resolved even for the rare isotopologues in their nature abundance by this type of spectrometers.In this dissertation, molecules bearing metals in a wide range covering both the main group and transition metals were studied. By taking advantage of both the traditional and newly developed molecular production techniques in the gas phase (for example, metal pin-electrodes and discharged assisted laser ablation spectroscopy), we obtained spectra of molecules containing magnesium, aluminum, arsenic, copper and zinc. Our subjects include metal acetylides (MgCCH, AlCCH and CuCCH), metal dicarbides (CCAs), metal cyanides (CuCN, ZnCN) as well as other metal mono-ligand molecules. For the zinc metal, complexes with two simple ligands were also investigated, such as HZnCl and HZnCN. We strongly believe that researchers in different disciplines would benefit from our laboratory studies: theoretical chemists can use our experimental results for calibration; astrophysicists would interpret their telescope observations by matching our precisely measured frequencies; material scientists could find new functional materials by linking the bulky properties of certain materials with our spectroscopic results of the monomers.
348

Selected applications of Fourier transform infrared spectroscopy to the study of cells and cellular components

Dubois, Janie. January 1999 (has links)
The potential applicability of Fourier transform infrared (FM) spectroscopy for the study of biomolecules, has been investigated through the investigation of three specific applications. Two of the applications selected involve the classification of whole cells, whereas the third concerns the study of peptides and proteins isolated from tissues as well as synthetic peptides. In the microbiological application, for the differentiation of bacteria on the basis of their FTIR spectra, it has been found that classification is most efficiently achieved through the utilisation of artificial neural networks, and that a wide, variety of bacteria can be correctly identified with minimal sample preparation after being grown on a single growth medium. The suitability of low-cost, disposable materials as supports for the deposition of bacteria samples has also been demonstrated. In contrast to the successful classification of bacteria, it has been found that the examination of cytological smears by FTIR spectroscopy does not allow the classification of cervical cell populations into the recognised diagnostic categories. In a microscopic investigation of the same cell populations utilising infrared imaging, localised areas of the smear were found to exhibit distinct characteristics not observed in the spectra of the entire population. This indicates that infrared imaging system may be required for this type of application because the infrared spectrum recorded from a whole cervical smear does not allow the detection of the small spectral features arising from the molecular changes associated with a localised pathological state. Finally, the investigation of factors affecting the stability of peptides related to amyloidosis has shown that temperatures above 70°C, hydrostatic pressure greater than 6 kbar, and alkaline pH promote the disaggregation of the typical intermolecular beta-sheet structure of amyloid peptides. Peptides utilised as model systems for amyloidosis showed
349

A parallel windowed fast discrete curvelet transform applied to seismic processing

Thomson, Darren, Hennenfent, Gilles, Modzelewski, Henryk, Herrmann, Felix J. January 2006 (has links)
We propose using overlapping, tapered windows to process seismic data in parallel. This method consists of numerically tight linear operators and adjoints that are suitable for use in iterative algorithms. This method is also highly scalable and makes parallel processing of large seismic data sets feasible. We use this scheme to define the Parallel Windowed Fast Discrete Curvelet Transform (PWFDCT), which we apply to a seismic data interpolation algorithm. The successful performance of our parallel processing scheme and algorithm on a two-dimensional synthetic data is shown.
350

Design and fabrication of a continuous flow mixer for investigating protein folding kinetics using focal plane array Fourier transform infrared spectroscopy

Haq, Moeed. January 2008 (has links)
This thesis presents the design, fabrication, and testing of a micromixing device intended for use in investigating protein dynamics on a microsecond timescale by Fourier transform infrared (FTIR) spectroscopy. Numerical modeling of flow was implemented to predict the influence of flow rates and geometric variations on mixing performance in three passive mixers. The simulation models were validated by experimental measurements using optical and infrared detection. The optimum level of mixing was observed in a multi-lamination mixer that combined thin filaments of differing fluids in an alternating manner. The multi-laminates were transferred onto polished calcium fluoride infrared-transparent optical windows by lithographic processing of an Epon-based polymer, SU-8. A rigid seal between two microchannels was accomplished through thermal bonding of an unexposed resist layer, which acted as a thermal epoxy under the influence of temperature. The multi-lamination mixer was used to study the changes in the secondary structure of beta-Lactoglobulin in deuterated phosphate buffer under varying physicochemical conditions by time-resolved FTIR spectroscopy using focal plane array detection. Upon a pH jump from pH 2 to neutral pH, a gradual loss of alpha-helical content, accompanied by an increase in random coils and turns was observed within 2 ms of mixing. In a second kinetic experiment, mixing of a neutral-pH solution of beta-Lactoglobulin with a 60% trifluoroethanol solution resulted in the formation of an alpha-helical intermediate with an accompanying increase in intramolecular beta-sheet structure within 500 mus of mixing. These results indicate that the multi-lamination mixer designed and fabricated in this study is well suited for investigations of protein dynamics on the micro- to millisecond timescale by time-resolved FTIR spectroscopy.

Page generated in 0.1478 seconds