• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 527
  • 119
  • 70
  • 61
  • 54
  • 35
  • 35
  • 35
  • 35
  • 35
  • 35
  • 15
  • 9
  • 8
  • 7
  • Tagged with
  • 1085
  • 1085
  • 430
  • 368
  • 205
  • 172
  • 93
  • 84
  • 83
  • 76
  • 73
  • 73
  • 71
  • 68
  • 67
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
551

Análise espectral de sinais de flutuação de pressão obtidos da fluidodinâmica computacional de leitos fluidizados

Reguly Junior, Helmuth 24 June 2015 (has links)
Submitted by Silvana Teresinha Dornelles Studzinski (sstudzinski) on 2015-11-04T14:53:35Z No. of bitstreams: 1 Helmuth Reguly Junior_.pdf: 1561804 bytes, checksum: b11f0f561f69a1560738aa1ccb8f4118 (MD5) / Made available in DSpace on 2015-11-04T14:53:35Z (GMT). No. of bitstreams: 1 Helmuth Reguly Junior_.pdf: 1561804 bytes, checksum: b11f0f561f69a1560738aa1ccb8f4118 (MD5) Previous issue date: 2015-06-24 / UNISINOS - Universidade do Vale do Rio dos Sinos / No presente trabalho, foram feitas análises espectrais de sinais de flutuação de pressão obtidos de simulações computacionais de leitos fluidizados. As simulações foram realizadas com o aplicativo ANSYS FLUENT 14.0. O modelo multifásico empregado foi o modelo de dois fluidos (TFM) Euler-granular. As tensões das fases sólidas foram modeladas pela Teoria Cinética dos Escoamentos Granulares (KTGF). Foram simulados dois leitos, um leito bidimensional em regime de fluidização rápida e um leito tridimensional em regimes borbulhante e turbulento, ambos com partículas do grupo B de Geldart. Os sinais de flutuação de pressão gerados nas simulações numéricas foram analisados via densidade espectral de potência. Foram identificados o mínimo período de tempo de simulação para gerar sinais estatisticamente significativos, bem como a mínima frequência de aquisição necessária para o tratamento dos sinais, os quais foram iguais a 32,5 s e 250 Hz, respectivamente. No leito 3D, o regime borbulhante foi caracterizado por picos nas frequências de 1,5 e 2,2 Hz, enquanto o regime de fluidização rápida simulado em 2D foi caracterizado por um pico a uma frequência de 0,12 Hz, o que se acredita estar relacionado com a frequência de movimento dos aglomerados de partículas. Também foi possível verificar a diferença entre os espectros de potência dos regimes borbulhante e turbulento, que são diferenciados pelos picos de frequência. No regime borbulhante foram identificados dois picos de frequência, enquanto no regime turbulento foi identificado apenas um pico. / In this study, spectral analyses of pressure fluctuation signals obtained from computational simulations of fluidized beds were done. The simulations were performed using ANSYS FLUENT 14.0. The multiphase model employed was the Euler-granular two-fluid model (TFM). The solid stresses were modeled by the kinetic theory of granular flows (KTGF). Two beds were simulated, a two-dimensional bed in fast fluidization regime and a three-dimensional bed in bubbling and turbulent regimes, both with Geldart-B particles. The pressure fluctuation signals generated by numerical simulations were analyzed via power spectral density. The minimum simulation periods to generate statistically significant signals were identified, as well as the minimum sampling rate required for the processing of signals, which were found equal to 325 and 250 Hz, respectively. In the 3D bed, the bubbling system was characterized by peaks at frequencies of 1.5 and 2.2 Hz, while the fast fluidization regime simulated in 2D was characterized by a peak at a frequency of 0.12 Hz, which may be related to the rate of motion of clusters. A major difference between the power spectra of bubbling and turbulent regimes was observed. In the bubbling regime, two frequency peaks may be identified, while in turbulent regime only one frequency peak appears.
552

Conception et réalisation des performances d'un spectro-imageur à transformée de Fourier dans l'UV lointain (IFTSUV) / design and performances of an imaging Fourier transform spectrometer working in the far UV (IFTSUV)

Ruiz de galarreta fanjul, Claudia 29 March 2013 (has links)
L’origine et l’évolution des différentes structures qui peuplent l’au-delà de la photosphère du Soleil, ainsi que les processus qui interviennent dans la dynamique et le chauffage de sa couronne demeurent de nos jours assez peu compris. L’inextricable complexité inhérente aux phénomènes physiques qui gouvernent l’atmosphère externe solaire s’accompagne de l’absence de données adaptées au besoin scientifique. En effet, l’interprétation et la modélisation des « mécanismes » qui raccordent les échanges entre la chromosphère et la couronne dépendent de paramètres d’observation critiques. Il est par exemple essentiel de pouvoir mesurer de larges bandes de températures et densités verticales s’adaptant aux multiples échelles spatiales et temporelles caractéristiques des différents évènements qui se déroulent dans le Soleil. La compréhension de la dynamique des plasmas repose aussi sur l’analyse Doppler de la scène observée. Ceci implique notamment la capacité de combiner des techniques de spectroscopie et d’imagerie simultanément dans le temps. Pour la couronne, le passage à l’UV spatial est incontournable, et relève d’un véritable défi technique. Malgré les excellents progrès technologiques, l’étude UV du Soleil est une science relativement récente, et aucune mission spatiale solaire n’a pu fournir jusqu’à présent une spectro-imagerie combinée et simultanée dans le domaine spectral qui nous intéresse. C’est pour répondre à cette attente que l’étude d’un nouveau dispositif appelé IFTSUV (abréviation de Imaging Fourier Transform Spectrometer working in the far UV), est présentée dans cette recherche. Malgré l’absence de missions d’opportunité dans l’horizon proche, les travaux de thèse se sont déroulés suivant le plan de l’action R&T du CNES R-S11/OT-0004-040, concernant la définition d’un spectro-imageur à transformée de Fourier dans l’UV lointain, et la réalisation en laboratoire d’un démonstrateur de métrologie dédié, pierre angulaire de la faisabilité technique de l’instrument. Ainsi, partant de la détermination du besoin scientifique et de la justification du choix technique, le premier objectif de cette étude est de concevoir un modèle instrumental préliminaire complet de l’IFTSUV. La spécification technique est fondée sur le calcul de dimensionnement et l’évaluation théorique des spécifications en termes de précision spectrale, qualité de l’image et rapport signal sur bruit. A travers l’identification des points durs, la réalisation d’une métrologie d’asservissement du miroir d’échantillonnage apparait tout naturellement, comme un besoin intrinsèque de la validation du concept. En effet, l’acquisition de l’interférogramme doit se faire de manière rigoureusement constante et le pas d’échantillonnage doit être connu avec une grande exactitude, car il fixe les nombres d’onde pour lesquels les spectres bruts sont calculés. Le maquettage d’une solution métrologique constitue donc le deuxième objectif de ce travail. L’architecture optique mise en place a été choisie afin de satisfaire les besoins de stabilité angulaire (< 2.5 μrad) et de précision linéaire (< 8 nm) discernés, et testée en laboratoire. Les résultats sur la maquette valident le concept, même si ses performances s’éloignent des prédictions théoriques. L’évaluation expérimentale des performances permet d’établir des solutions aux problèmes rencontrés qui convergent vers l’optimisation et le prototypage d’un système pouvant être intégré dans une application spatiale. / The origin and evolution of the different structures that inhabit beyond the Sun’s photosphere, as well as the processes involved in the dynamics and the heating of the corona remain quite unknown. The inextricable complexity of the physical phenomena that govern the solar outer atmosphere is accompanied by the lack of suitable data adapted to the scientific need. Indeed, the interpretation and the models of the mechanisms that connect the exchanges between the chromosphere and the corona depend on critical observational parameters. It is for example essential to measure broad bands of vertical temperature and density ranges that fit the multiple spatial and temporal scales that are characteristic of the different events that take place in the Sun. The understanding of the dynamics of the plasma must be also based on the Doppler analysis of the observed scene. That implies the ability to combine time resolved spectroscopic and imaging technologies. Moreover, space is the place to observe the far UV corona and that implies a real technical challenge. Despite excellent advances in technology and instrumentation, the study of the Sun in the far UV is a fairly recent. To date, no solar space mission could provide a combined and simultaneous diagnostic of both observable in the spectral range of interest. It is because of these expectations that the study of a new device called IFTSUV (the acronym of Imaging Fourier Transform Spectrometer working in the far UV) is presented in this research. Despite the lack of opportunity missions on the near horizon, these thesis works have been conducted thanks to the R&D funding R-S11/OT-0004-040 from the CNES, concerning either the definition of an imaging Fourier transform spectrometer in the far UV, or the realization of a laboratory metrology demonstrator that is the cornerstone of the instrument’s feasibility. Thus, starting from the definition of the scientific requirements that lead to the technical choice, the first objective of this study is to develop a preliminary instrumental model of the IFTSUV. The overall technical and design specifications are based in theoreticalcalculations that have been expressed in terms of spectral accuracy, image quality and signal to noise ratio. Throughout the identification of difficult points, the realization of a servo-metrology system dedicated to the sampling mirror appears naturally as an intrinsic need of proof of concept. Indeed, the wavenumbers from the raw spectra are set by the interferogram. That implies that acquisition must be rigorously constant and that the sampling steps must be known with high accuracy. The mockup of a metrological solution is therefore the second objective of this work. The optical breadboard architecture under test has been chosen to meet the needs of angular stability (< 2.5 μrad) and linear accuracy (< 8 nm). The results on the demonstrator validate the concept even if its performances are away from the theoretical predictions. The experimental performance evaluation is used to establish solutions to the instrumental problems encountered. That converge to the optimization and prototyping of a system that could be integrated in a space based application.
553

Experimental study fo white heat line formation in burned bone using fourier transform infrared spectroscopy

Gough, Megan Anne 02 November 2017 (has links)
In the anthropological analysis of burned bone, the presence of a white heat line aids in determining a bone’s physical condition prior to burning, distinguishing between those burned fleshed or wet versus dry. However, while the relationship between this thermal signature and a bone’s physical condition has been studied, there is a lack of research concerning the chemical composition of white heat lines. The present study assessed the composition of white heat lines that form on burned bone using Fourier transform infrared spectroscopy (FTIR) with the potassium bromide (KBr) pellet method. The present study examined the effects of soft tissue and the retention of bone’s organic material, including naturally-occurring grease and water, on the development and appearance of a white heat line. Experimental remains consisted of isolated long bones from white-tailed deer (Odocoileus virginianus), elk (Cervus canadensis), sheep (Ovis aries), and pig (Sus scrofa) in five physical conditions – fleshed (fresh bones with adhering soft tissue), very wet (recently defleshed bone, greasy), partially wet (defleshed, slight grease retention), dry (defleshed, naturally degreased), and soaked (formerly dry bone immersed in water). These bones were burned over a wood fire made within a 55-gallon drum. After a visual analysis to evaluate white heat line formation, chemical composition was analyzed by determining spectral peak heights of the carbonate (CO3) ν3 (1415 cm-1), phosphate (PO4) ν3 (1035 cm-1), and amide I (1660 cm-1) vibrational bands. These thermal signatures appear to form superficially, measuring approximately 1.5 mm in depth. Results indicate that white heat lines that formed on fleshed bone contain an increased amount of CO3, PO4, and amide I in comparison to their unburned controls, while those that formed on very wet bone contain decreased amounts instead. These findings further our knowledge of how fire modifies physical remains and the effect that bone’s physical condition prior to burning has on the development of a white heat line and the resulting compositional changes. In order to build upon the results gained from the present study, continuing research is needed to investigate compositional differences between white heat lines that form on fleshed versus very wet bone and to assess bone’s fat content as a possible contributing factor. Additional FTIR research is needed to assess the other vibrational bands of CO3, PO4, and amide that are present in bone.
554

AN ANALYSIS OF RESISTANCE SPOT WELD QUALITY BASED ON ACOUSTIC AND ELECTRICAL SIGNATURES

Butler, Ivan Charles 01 January 2019 (has links)
The union of a set of materials by way of Resistance Spot Welding is designed so that once fused together, a substantial amount of intentional, external force must be applied to separate the contents. Therefore, Resistance Spot Welding is often the preferred fusion method in high-volume manufacturing processes. The result of Resistance Spot Welding however is the formation of a weld nugget which is not visible to the naked eye. Destructive and/or ultrasonic methods applied off-line must be used to determine the quality of each weld; both inefficient and expensive processes. The following research analyzes the data fed back during resistance spot weld sequences in-line and establishes a correlation between emitted characteristics and the final quality of a spot weld. The two characteristics researched to segregate weld quality are: the electrical sin wave signature and the acoustic sin wave signature produced during the welding sequence. Both features were discovered to have a direct correlation to the final quality of a weld once cured. By measuring and comparing these characteristics at the source, an opportunity is presented to decrease time and potential defects by confirming the quality of each weld in-process and at the source.
555

Modeling Three-Dimensional Shape of Sand Grains Using Discrete Element Method

Das, Nivedita 04 May 2007 (has links)
The study of particle morphology plays an important role in understanding the micromechanical behavior of cohesionless soil. Shear strength and liquefaction characteristics of granular soil depend on various morphological characteristics of soil grains such as their particle size, shape and surface texture. Therefore, accurate characterization and quantification of particle shape is necessary to study the effect of grain shape on mechanical behavior of granular assembly. However, the theoretical and practical developments of quantification of particle morphology and its influence on the mechanical response of granular assemblies has been very limited due to the lack of quantitative information about particle geometries, the experimental and numerical difficulties in characterizing and modeling irregular particle morphology. Motivated by the practical relevance of these challenges, this research presents a comprehensive approach to model irregular particle shape accurately both in two and three dimensions. To facilitate the research goal, a variety of natural and processed sand samples is collected from various locations around the world. A series of experimental and analytical studies are performed following the sample collection effort to characterize and quantify particle shapes of various sand samples by using Fourier shape descriptors. As part of the particle shape quantification and modeling, a methodology is developed to determine an optimum sample size for each sand sample used in the analysis. Recently, Discrete Element Method (DEM) has gained attention to model irregular particle morphology in two and three dimensions. In order to generate and reconstruct particle assemblies of highly irregular geometric shapes of a particular sand sample in the DEM environment, the relationship between grain size and shape is explored and no relationship is found between grain size and shape for the sand samples analyzed. A skeletonization algorithm is developed in this study in order to automate the Overlapping Discrete Element Cluster (ODEC) technique for modeling irregular particle shape in two and three dimensions. Finally, the two-dimensional and three-dimensional particle shapes are implemented within discrete element modeling software, PFC2D and PFC3D, to evaluate the influence of grain shape on shear strength behavior of granular soil by using discrete simulation of direct shear test.
556

Proton Conduction in In^3 +  -Doped SnP2O7 at Intermediate Temperatures

Sano, Mitsuru, Hibino, Takashi, Tomita, Atsuko, Heo, Pilwon, Kamiya, Toshio, Nagao, Masahiro January 2006 (has links)
No description available.
557

Study of the effect of lateral inhomogeneities on the propagation of Rayleigh waves in an elastic medium

Nasseri-Moghaddam, Ali January 2006 (has links)
The use of geophysical testing methods has considerable potential to be a cost effective and accurate technique to assess near-surface soil conditions. Multi channel analysis of surface waves (MASW) test is a geophysical non-intrusive test that uses the dispersive characteristic of Rayleigh waves to estimate low strain shear modulus and damping coefficient of near-surface soil. Also, this technique is used to detect underground voids. Recently, MASW technique has gained more attention, partly because of its ease of use and partly because of the significant improvements in data acquisition systems. The theories of MASW test consider the effect of horizontal soil layering, though the effect of lateral inhomogeneities (i. e. cavities and voids), inclined layering and inverse layering (i. e. a layered system in which the top layers are stiffer than the bottom ones) are not addressed properly in these theories. <br /><br /> The objective of this dissertation is to investigate the effect of lateral inhomogeneities on the propagation of Rayleigh waves in an elastic half-space excited by a transient loading. The results can be applied to locate underground cavities using MASW test and to improve the MASW analysis techniques. In lieu of theoretical solutions, two and three dimensional numerical models are constructed to simulate the MASW test. To assure the quality of the obtained data, numerical models are calibrated with Lamb solution. Voids with different sizes and embedment depths are inserted in the medium. Responses along the surface as well as inside the medium are recorded and analyzed in time, frequency, spatial and frequency-wave number domains. Different material types and sources are used to generalize the results. Afterwards, the combined effect of void and layered systems on the surface responses are studied. To verify the results, experimental field and laboratory data are presented and the trends are compared to the numerical results. <br /><br /> It is found that the void starts to vibrate in response to the Rayleigh wave excitation. Due to the vibration of the void energy partitioning occurs. Part of the incident energy is reflected in the form of Rayleigh wave. Another part is converted to body waves, and spread into the medium. The transferred part of the energy is attenuated and has smaller amplitudes. Finally, a part of energy is trapped in the void region and bounces back and forth between the void boundaries, until it damps. The trapped energy is associated to higher modes of Rayleigh waves and excited Lamb waves. The effect of trapped energy is seen as a region in the vicinity of the void with concentrated energy, in frequency domain. The extents of this region depends on the void size, and the frequency content of the incident energy. Thus, in some cases it is possible to correspond the size of the model to the extents of the region with energy concentration. <br /><br /> A new technique is proposed to determine the location of a void, and estimate its embedment depth. The technique is called Attenuation Analysis of Rayleigh Waves (AARW), and is based on the observed damping effect of the void on the surface responses. For verification, the results are compared to experimental field and laboratory data. The observations are in good agreement with the observed numerical results. Further, the AARW technique showed to be a promising tool for void detection.
558

Spectroscopy of selected metal-containing diatomic molecules

Gordon, Iouli January 2005 (has links)
Fourier transform infrared emission spectra of MnH and MnD were observed in the ground <em>X</em><sup>7</sup>&sigma;<sup>+</sup> electronic state. The vibration-rotation bands from <em>v</em> = 1 to 0 to <em>v</em> = 3 to 2 for MnH, and from <em>v</em> = 1 to 0 to <em>v</em> = 4 to 3 for MnD were recorded at an instrumental resolution of 0. 0085 cm<sup>-1</sup>. Spectroscopic constants were determined for each vibrational level and equilibrium constants were found from a Dunham-type fit. The equilibrium vibrational constant <em>&omega;<sub>e</sub></em> for MnH was found to be 1546. 84518(65) cm<sup>-1</sup>, the equilibrium rotational constant <em>B<sub>e</sub></em> was found to be 5. 6856789(103) cm<sup>-1</sup> and the equilibrium bond distance <em>r<sub>e</sub></em> was determined to be 1. 7308601(47) Å. <br /><br /> New high resolution emission spectra of CoH and CoD molecules have been recorded in the 640 nm to 3. 5 <em>µ</em>m region using a Fourier transform spectrometer. Many bands were observed for the <em>A</em><sup>'3</sup>&phi;-<em>X</em><sup>3</sup>&phi; electronic transition of CoH and CoD. In addition, a new [13. 3]4 electronic state was found by observing the [13. 3]4- <em>X</em><sup>3</sup>&phi;<sub>3</sub> and [13. 3]4-<em>X</em><sup>3</sup>&phi;<sub>4</sub> transitions in the spectrum of CoD. Analysis of the transitions with &delta;&omega; = 0, ±1 provided more accurate values of spin-orbit splittings between &omega; = 4 and &omega; = 3 components. The ground state for both molecules was fitted both to band and Dunham-type constants. The estimated band constants of the perturbed upper states were also obtained. <br /> <br /> The emission spectrum of gas-phase YbO has been investigated using a Fourier transform spectrometer. A total of 8 red-degraded bands in the range 9 800 ? 11 300 cm<sup>-1</sup> were recorded at a resolution of 0. 04 cm<sup>-1</sup>. Because of the multiple isotopomers present in the spectra, only 3 bands were rotationally analyzed. Perturbations were identified in two of these bands and all 3 transitions were found to terminate at the <em>X</em><sup>1</sup>&sigma;<sup>+</sup> ground electronic state. The electronic configurations that give rise to the observed states are discussed and molecular parameters for all of the analyzed bands are reported. <br /><br /> Electronic spectra of the previously unobserved EuH and EuD molecules were studied by means of Fourier transform spectroscopy and laser-induced fluorescence. The extreme complexity of these transitions made rotational assignments of EuH bands impossible. However, the spin-spin interaction constant, &lambda;, and Fermi contact parameter, <em>b</em><sub>F</sub>, in the ground <em>X</em><sup>9</sup>&sigma;<sup>-</sup> electronic state were estimated for the <sup>151</sup>EuH and <sup>153</sup>EuH isotopologues. <br /><br /> Electronic spectra of SmH, SmCl, TmH and ErF molecules were recorded for the first time using Fourier transform spectrometer. The poor signal to noise ratio of the observed bands coupled with their complexity prevented a rotational analysis. The electronic states that may be involved in the observed transitions are discussed.
559

Study of the effect of lateral inhomogeneities on the propagation of Rayleigh waves in an elastic medium

Nasseri-Moghaddam, Ali January 2006 (has links)
The use of geophysical testing methods has considerable potential to be a cost effective and accurate technique to assess near-surface soil conditions. Multi channel analysis of surface waves (MASW) test is a geophysical non-intrusive test that uses the dispersive characteristic of Rayleigh waves to estimate low strain shear modulus and damping coefficient of near-surface soil. Also, this technique is used to detect underground voids. Recently, MASW technique has gained more attention, partly because of its ease of use and partly because of the significant improvements in data acquisition systems. The theories of MASW test consider the effect of horizontal soil layering, though the effect of lateral inhomogeneities (i. e. cavities and voids), inclined layering and inverse layering (i. e. a layered system in which the top layers are stiffer than the bottom ones) are not addressed properly in these theories. <br /><br /> The objective of this dissertation is to investigate the effect of lateral inhomogeneities on the propagation of Rayleigh waves in an elastic half-space excited by a transient loading. The results can be applied to locate underground cavities using MASW test and to improve the MASW analysis techniques. In lieu of theoretical solutions, two and three dimensional numerical models are constructed to simulate the MASW test. To assure the quality of the obtained data, numerical models are calibrated with Lamb solution. Voids with different sizes and embedment depths are inserted in the medium. Responses along the surface as well as inside the medium are recorded and analyzed in time, frequency, spatial and frequency-wave number domains. Different material types and sources are used to generalize the results. Afterwards, the combined effect of void and layered systems on the surface responses are studied. To verify the results, experimental field and laboratory data are presented and the trends are compared to the numerical results. <br /><br /> It is found that the void starts to vibrate in response to the Rayleigh wave excitation. Due to the vibration of the void energy partitioning occurs. Part of the incident energy is reflected in the form of Rayleigh wave. Another part is converted to body waves, and spread into the medium. The transferred part of the energy is attenuated and has smaller amplitudes. Finally, a part of energy is trapped in the void region and bounces back and forth between the void boundaries, until it damps. The trapped energy is associated to higher modes of Rayleigh waves and excited Lamb waves. The effect of trapped energy is seen as a region in the vicinity of the void with concentrated energy, in frequency domain. The extents of this region depends on the void size, and the frequency content of the incident energy. Thus, in some cases it is possible to correspond the size of the model to the extents of the region with energy concentration. <br /><br /> A new technique is proposed to determine the location of a void, and estimate its embedment depth. The technique is called Attenuation Analysis of Rayleigh Waves (AARW), and is based on the observed damping effect of the void on the surface responses. For verification, the results are compared to experimental field and laboratory data. The observations are in good agreement with the observed numerical results. Further, the AARW technique showed to be a promising tool for void detection.
560

Spectroscopy of selected metal-containing diatomic molecules

Gordon, Iouli January 2005 (has links)
Fourier transform infrared emission spectra of MnH and MnD were observed in the ground <em>X</em><sup>7</sup>&sigma;<sup>+</sup> electronic state. The vibration-rotation bands from <em>v</em> = 1 to 0 to <em>v</em> = 3 to 2 for MnH, and from <em>v</em> = 1 to 0 to <em>v</em> = 4 to 3 for MnD were recorded at an instrumental resolution of 0. 0085 cm<sup>-1</sup>. Spectroscopic constants were determined for each vibrational level and equilibrium constants were found from a Dunham-type fit. The equilibrium vibrational constant <em>&omega;<sub>e</sub></em> for MnH was found to be 1546. 84518(65) cm<sup>-1</sup>, the equilibrium rotational constant <em>B<sub>e</sub></em> was found to be 5. 6856789(103) cm<sup>-1</sup> and the equilibrium bond distance <em>r<sub>e</sub></em> was determined to be 1. 7308601(47) Å. <br /><br /> New high resolution emission spectra of CoH and CoD molecules have been recorded in the 640 nm to 3. 5 <em>µ</em>m region using a Fourier transform spectrometer. Many bands were observed for the <em>A</em><sup>'3</sup>&phi;-<em>X</em><sup>3</sup>&phi; electronic transition of CoH and CoD. In addition, a new [13. 3]4 electronic state was found by observing the [13. 3]4- <em>X</em><sup>3</sup>&phi;<sub>3</sub> and [13. 3]4-<em>X</em><sup>3</sup>&phi;<sub>4</sub> transitions in the spectrum of CoD. Analysis of the transitions with &delta;&omega; = 0, ±1 provided more accurate values of spin-orbit splittings between &omega; = 4 and &omega; = 3 components. The ground state for both molecules was fitted both to band and Dunham-type constants. The estimated band constants of the perturbed upper states were also obtained. <br /> <br /> The emission spectrum of gas-phase YbO has been investigated using a Fourier transform spectrometer. A total of 8 red-degraded bands in the range 9 800 ? 11 300 cm<sup>-1</sup> were recorded at a resolution of 0. 04 cm<sup>-1</sup>. Because of the multiple isotopomers present in the spectra, only 3 bands were rotationally analyzed. Perturbations were identified in two of these bands and all 3 transitions were found to terminate at the <em>X</em><sup>1</sup>&sigma;<sup>+</sup> ground electronic state. The electronic configurations that give rise to the observed states are discussed and molecular parameters for all of the analyzed bands are reported. <br /><br /> Electronic spectra of the previously unobserved EuH and EuD molecules were studied by means of Fourier transform spectroscopy and laser-induced fluorescence. The extreme complexity of these transitions made rotational assignments of EuH bands impossible. However, the spin-spin interaction constant, &lambda;, and Fermi contact parameter, <em>b</em><sub>F</sub>, in the ground <em>X</em><sup>9</sup>&sigma;<sup>-</sup> electronic state were estimated for the <sup>151</sup>EuH and <sup>153</sup>EuH isotopologues. <br /><br /> Electronic spectra of SmH, SmCl, TmH and ErF molecules were recorded for the first time using Fourier transform spectrometer. The poor signal to noise ratio of the observed bands coupled with their complexity prevented a rotational analysis. The electronic states that may be involved in the observed transitions are discussed.

Page generated in 0.3867 seconds