Spelling suggestions: "subject:"fracture 3dmodeling"" "subject:"fracture bymodeling""
1 |
Shale fracturing enhancement by using polymer-free foams and ultra-light weight proppantsGu, Ming, active 21st century 03 March 2015 (has links)
Slickwater with sand is the most commonly used hydraulic fracturing treatment for shale reservoirs. The slickwater treatment produces long skinny fractures, but only the near wellbore region is propped due to fast settling of sand. Adding gel into water can prevent the fast settling of sand, but gel may damage the fracture surface and proppant pack. Moreover, current water-based fracturing consumes a large amount of water, has high water leakage, and imposes high water disposal costs. The goal of this project is to develop non-damaging, less water-intensive fracturing treatments for shale gas reservoirs with improved proppant placement efficiency. Earlier studies have proposed to replace sand with ultra-light weight proppants (ULWP) to enhance proppant transport, but it is not used commonly in field. This study evaluates the performance of three kinds of ULWPs covering a wide range of specific gravity and representing the three typical manufacturing methods. In addition to replacing sand with ULWPs, replacing water with foams can be an alternative treatment that reduces water usage and decreases proppant settling. Polymer-added foams have been used in conventional reservoirs to improve proppant placement efficiency. However, polymers can damage shale permeability in unconventional reservoirs. This dissertation studies polymer-free foams (PFF) and evaluates their performance. This study uses both experiments and simulations to assess the productivity and profitability of the ULWP treatment and PFF treatment. First, a reservoir simulation model is built in CMG to study the impact of fracture conductivity and propped length on fracture productivity. This model assumes a single fracture intersecting a few reactivated natural fractures. Second, a 2D fracturing model is used to simulate the fracture propagation and proppant transport. Third, strength, API conductivity and gravity settling rates are measured for three ULWPs. Fourth, foam stability tests are conducted to screen the best PFF agents and the selected foams are put into a circulating loop to study their rheology. Finally, empirical correlations from the experiments are applied in the fracturing model and reservoir model to predict productivity by using the ULWPs with slickwater or using the PFFs with sand. Experimental results suggest that, at 4000 psi with concentrations varying from partial monolayer (0.05 lb/ft²) to multilayer (1 lb/ft²), ULW-1 (polymeric) is the most deformable with conductivity of 1-10 md-ft. ULW-2 (resin coated and impregnated ground walnut hull) is the second most deformable with similar conductivity. ULW-3 (resin coated porous ceramic) is the least deformable with conductivity of 20-1000 md-ft, which is comparable to sand. Three foam formulations (A, B: regular surfactant foam, C: viscoelastic surfactant foam) are selected based on the stability results of fourteen surfactants. All PFFs exhibit power-law rheological behavior in a laminar flow regime. The power law parameters of the regular surfactant PFF depend on both quality and pressure when quality is higher than 60% but depend on quality only when quality is lower than 60%. Simulation results suggest that under the optimal concentration of 0.04-0.06 v/v (0.37-0.55 lb/gal) for both ULW-1 and ULW-2, and 0.1 v/v (1.46 lb/gal) for ULW-3, 1-year cumulative production for 0.1 µD shale reservoir is higher than sand by 127% for ULW-1, 28% for ULW-2, and 38% for ULW-3. The productivity benefits decrease as shale permeability increases for all three ULWPs. ULW-1 and ULW-2 have higher productivity benefits for longer production time, while ULW-3 has relatively constant productivity benefits over time. The economic profit of ULW-1 when priced at $5/lb is 2.2 times larger than that of sand for 1-year production in 0.1 µD shale reservoirs; the acceptable maximum price is $10/lb for ULW-1, $6/lb for ULW-2, and $2.5/lb for ULW-3. The maximum price increases as production time increases. The PFFs with a quality of 60% carrying mesh 40 sand at a partial monolayer concentration of 0.04 v/v (0.88 lb/gal) can generate 50% higher productivity, 74% higher economic profit, and over 300% higher water efficiency than the best slickwater-sand case (mesh 40 sand at 0.1 v/v) for 1-year production in 0.1µD shale reservoirs. The benefits of using the PFFs decrease with increasing shale permeability, increasing production time, or decreasing pumping time. This dissertation gives a range of field conditions where the ULWP and PFF may be more effective than slickwater-sand fracturing. / text
|
2 |
Fracture Modeling and Flow Behavior in Shale Gas Reservoirs Using Discrete Fracture NetworksOgbechie, Joachim Nwabunwanne 2011 December 1900 (has links)
Fluid flow process in fractured reservoirs is controlled primarily by the connectivity of fractures. The presence of fractures in these reservoirs significantly affects the mechanism of fluid flow. They have led to problems in the reservoir which results in early water breakthroughs, reduced tertiary recovery efficiency due to channeling of injected gas or fluids, dynamic calculations of recoverable hydrocarbons that are much less than static mass balance ones due to reservoir compartmentalization, and dramatic production changes due to changes in reservoir pressure as fractures close down as conduits. These often lead to reduced ultimate recoveries or higher production costs.
Generally, modeling flow behavior and mass transport in fractured porous media is done using the dual-continuum concept in which fracture and matrix are modeled as two separate kinds of continua occupying the same control volume (element) in space. This type of numerical model cannot reproduce many commonly observed types of fractured reservoir behavior since they do not explicitly model the geometry of discrete fractures, solution features, and bedding that control flow pathway geometry. This inaccurate model of discrete feature connectivity results in inaccurate flow predictions in areas of the reservoir where there is not good well control.
Discrete Fracture Networks (DFN) model has been developed to aid is solving some of these problems experienced by using the dual continuum models. The Discrete Fracture Networks (DFN) approach involves analysis and modeling which explicitly incorporates the geometry and properties of discrete features as a central component controlling flow and transport. DFN are stochastic models of fracture architecture that incorporate statistical scaling rules derived from analysis of fracture length, height, spacing, orientation, and aperture.
This study is focused on developing a methodology for application of DFN to a shale gas reservoir and the practical application of DFN simulator (FracGen and NFflow) for fracture modeling of a shale gas reservoir and also studies the interaction of the different fracture properties on reservoir response. The most important results of the study are that a uniform fracture network distribution and fracture aperture produces the highest cumulative gas production for the different fracture networks and fracture/well properties considered.
|
3 |
A New Framework Based on a Discrete Element Method to Model the Fracture Behavior for Brittle Polycrystalline MaterialsSaleme Ruize, Katerine 12 August 2016 (has links)
This work aims to develop and implement a linear elastic grain-level micromechanical model based on the discrete element method using bonded contacts and an improved fracture criteria to capture both intergranular and transgranular microcrack initiation and evolution in polycrystalline ceramics materials. Gaining a better understanding of the underlying mechanics and micromechanics of the fracture process of brittle polycrystalline materials will aid in high performance material design. Continuum mechanics approaches cannot accurately simulate the crack propagation during fracture due to the discontinuous nature of the problem. In this work we distinguish between predominately intergranular failure (along the grain boundaries) versus predominately transgranular failure (across the grains) based on grain orientation and microstructural parameters to describe the contact interfaces and present the first approach at fracturing discrete elements. Specifically, the influence of grain boundary strength and stiffness on the fracture behavior of an idealized ceramic material is studied under three different loading conditions: uniaxial compression, brazilian, and four-point bending. Digital representations of the sample microstructures for the test cases are composed of hexagonal, prismatic, honeycomb-packed grains represented by rigid, discrete elements. The principle of virtual work is used to develop a microscale fracture criteria for brittle polycrystalline materials for tensile, shear, torsional and rolling modes of intergranular motion. The interactions between discrete elements within each grain are governed by traction displacement relationships.
|
4 |
Fracture modeling by the eigenfracture approach for the implicit material point method frameworkChihadeh, Ahmad, Storm, Johannes, Kaliske, Michael 05 March 2024 (has links)
The material point method (MPM) is efficiently applied for the simulation of structures undergoing large deformations where fracture and crack initiation are expected. The eigenfracture approach is introduced in the paper at hand for the implicit MPM to model crack development and propagation in static and dynamic fracture of brittle elastic materials. Eigenfracture is an energetic fracture formulation applied in the postprocessing step of the implicit MPM, making its implementation relatively straightforward. Furthermore, the driving energy used to check crack propagation is evaluated using the representative crack elements (RCE), by which the crack is modeled as a discrete phenomenon. The RCE approach shows more realistic results compared to other split models. Additionally, the fracture description of reinforced materials within the MPM is also presented in this article by coupling truss finite elements to the MPM, considering the bond stress-slip constitutive model. Two- and three-dimensional problems in static and dynamic applications are presented to assess the efficacy of the approach.
|
5 |
Analysis of hot workability in 316L steel using ductile fracture criterionsStrid, Viktor January 2022 (has links)
The focus of this thesis is to develop a simulation model for predicting ductile fractures during hot working at Alleima. The main fracture mechanism in these conditions is ductile fracture by void coalescence. The ductile fractures are caused by the linking of voids that appear when there is large plastic deformation near second-phase particles. The chosen method to simulate these was to use a Ductile Fracture Criterion (DFC), which builds on using FE models with a damage parameter. Two criteria were selected to be tested. The austenitic stainless-steel alloy 316L was selected as material for this work. Using the Gleeble 3500 system, hot tension and compression experiments were performed to gather data needed for the simulation models as well as inducing ductile fractures. Rupture occurred for all the hot tension samples and cracks were found for only one of the hot compression experiments. Using data from the Gleeble tests, a separate simulation model for each of the setups were created using the finite element software Marc/Mentat. A flow stress model for 316L was developed. Results from the simulations show that both selected DFCs can be used to predict ductile fractures. Particularly for hot tension. It was shown that it is important to model the temperature gradient in the sample accurately. For hot compression, it was difficult to conclude if the criterions were able to predict fracture since only one data point was available. The thesis concludes that there could be of interest with continued work using DFCs at Alleima.
|
Page generated in 0.0882 seconds