• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 44
  • 44
  • 20
  • 13
  • 12
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Application of Stable Isotope Geochemistry to Assess TCE Biodegradation and Natural Attenuation in a Fractured Dolostone Bedrock

Clark, Justin January 2011 (has links)
Isotopic methods have been developed over the last 10 years as a method for determining chemical interactions of chlorinated solvents. These methods are especially promising for. This study attempts to employ and develop compound specific isotopic analyses of TCE and cDCE, along with chemical data, to characterize the degradation of TCE in a fractured bedrock aquifers. The Smithville site is a contaminated field site with extremely high levels of TCE contamination that is currently undergoing monitored remediation. From December 2008 until April 2010 extended samples were collected from the site to provide additional data analyses including isotopic data. The redox conditions at the site are anoxic to reducing, with sulfate reduction and methanogenesis as dominant terminal electron accepting processes. Redox data indicates that well electrochemical conditions are highly variable within the site, including areas near the source zone that not very reducing. Documented changes in groundwater conditions to much more reducing environments indicate that oxidation of organic matter is occurring at the Smithville site in select wells. Chemical analyses of TCE, DCE, VC, ethene and ethane are employed determine whether reductive dechlorination was occurring at the site. Results of field testing indicate that many wells on site, especially in the proximity of the source zone, dechlorination products were found. The isotopic data had a high range in both carbon and chlorine isotopes. Chlorine isotopic data ranges from a δ37Cl(TCE) of 1.39 to 4.69, a δ37Cl(cDCE) of 3.57 to 13.86, a δ13C(TCE) of -28.9 to -20.7, and a δ13C(cDCE) of -26.5 to -11.82. The range in values indicate varying degrees of degradation throughout the site, with the same wells grouping together. Combined chemical, redox and isotopic data shows that degradation seems to be a removal process for TCE at the Smithville site. Concentrations of chemicals created as a result of TCE degradation verify degradation, especially in wells 15S9, R7 and 17S9. Historically production of DCE in significant amounts, above 1.0 ppb, was observed to only occur after 2003. In addition to this, DCE data shows that the percentage of DCE made up of cDCE is above 96%. This indicates that microbes most likely mediate the processes that formed DCE from TCE. The linear regression of the delta-delta plot for isotopic TCE data shows line that is likely a direct function of the carbon and chlorine isotopic fractionation imparted upon the original TCE released. The slope found is consistent with data collected from other studies though cannot be applied to determining the process directly given the range of variability in isotopic field data.
22

Groundwater recharge, flow and discharge in a large crystalline watershed

GLEESON, THOMAS 14 July 2009 (has links)
The objective of this thesis is to constrain the fundamental hydrogeological processes of a large crystalline fractured rock watershed in the Canadian Shield. The fundamental hydrogeological processes of groundwater recharge, flow and discharge are examined individually as well as holistically using a revised conceptual model. The study area is the topographically-subdued Tay River watershed in eastern Ontario where a thin veneer of soil overlies Precambrian crystalline rocks and Paleozoic sediments. Spatial scales from local-scale (100s m2 to 1 km2) to watershed-scale (>100 km2) are examined. Recharge processes are defined using hydrogeological characterization, numerical simulation and isotopic, thermal and hydraulic responses to a snowmelt event. Soil thickness and bedrock transmissivity are highly heterogeneous at the local scale. Cold, 2H depleted snowmelt locally recharged the bedrock aquifer to depths of at least 20 m within two days. This rapid recharge process is localized to areas where the soil is very thin whereas slow recharge is likely widespread. The impact of lineaments on groundwater flow at the watershed-scale is examined using geomatic analysis, hydrogeological characterization, numerical simulation and fracture mapping. Lineaments are interpreted as structural features because the two principal lineament sets are oriented parallel to fracture and fault orientations. The fractured bedrock underlying lineaments generally consists of poorly connected zones of reduced permeability suggesting lineament can be barriers to recharge and flow in this setting. Natural conservative, radioactive, and thermal tracers are integrated with streamflow measurements and a steady-state advective model to delimit the discharge locations and quantify the discharge flux to lakes, wetlands, creeks and the Tay River. The groundwater discharge rate to most surface water bodies is low. Groundwater discharge is distributed across the watershed rather than localized around lineaments or zones of exposed brittle fractures. In the revised conceptual model, recharge is considered two separate processes, groundwater flow is compartmentalized and the discharge flux is considerably lower than porous media watersheds. This thesis provides a better understanding of fundamental hydrogeological processes in a large crystalline fractured rock watershed which impacts the sustainability of water resources and ecology. / Thesis (Ph.D, Civil Engineering) -- Queen's University, 2009-07-13 14:51:25.244
23

Development of local sampling and monitoring protocol for radioactive elements in fractured rock Acquifers in South Africa using a case study in Beaufort West

Gaathier Mahed January 2009 (has links)
<p>The aim of this study was to test whether one could use the same methods as used for sampling heavy metals and apply them to radioactive elements. Furthermore a sampling protocol was developed, the first of its kind, for the sampling of radioactive elements in fractured rock aquifers. This was achieved by initially examining local as well as international manuals and methods. The aforementioned was done in conjunction with a literature review of the movement of radioactive elements in these fractured rock aquifers. Beaufort West was utilised as a study area and the geology, hydrogeology and topography was outlined. Background radioactivity was generally acceptable except for two samples which were anomalously high. Taking cognisance of the methods used, as well as those previously applied in the area and abroad, a sampling protocol for radioactive elements in fractured rock aquifers was developed and attached as an appendix. In conclusion it was suggested that multiple methods be tested on one well in order to check whether similar results would occur. This would thus determine the best applicable methods. Also it was proposed that a new method, called DGT sampling, be applied in order to gain a time weighted average of the heavy metals and radioactive elements in groundwater. It could also be clearly seen, by comparing historical data and the current data, that the methods used for sampling heavy metal can be applied to radioactivity.</p>
24

Application of Stable Isotope Geochemistry to Assess TCE Biodegradation and Natural Attenuation in a Fractured Dolostone Bedrock

Clark, Justin January 2011 (has links)
Isotopic methods have been developed over the last 10 years as a method for determining chemical interactions of chlorinated solvents. These methods are especially promising for. This study attempts to employ and develop compound specific isotopic analyses of TCE and cDCE, along with chemical data, to characterize the degradation of TCE in a fractured bedrock aquifers. The Smithville site is a contaminated field site with extremely high levels of TCE contamination that is currently undergoing monitored remediation. From December 2008 until April 2010 extended samples were collected from the site to provide additional data analyses including isotopic data. The redox conditions at the site are anoxic to reducing, with sulfate reduction and methanogenesis as dominant terminal electron accepting processes. Redox data indicates that well electrochemical conditions are highly variable within the site, including areas near the source zone that not very reducing. Documented changes in groundwater conditions to much more reducing environments indicate that oxidation of organic matter is occurring at the Smithville site in select wells. Chemical analyses of TCE, DCE, VC, ethene and ethane are employed determine whether reductive dechlorination was occurring at the site. Results of field testing indicate that many wells on site, especially in the proximity of the source zone, dechlorination products were found. The isotopic data had a high range in both carbon and chlorine isotopes. Chlorine isotopic data ranges from a δ37Cl(TCE) of 1.39 to 4.69, a δ37Cl(cDCE) of 3.57 to 13.86, a δ13C(TCE) of -28.9 to -20.7, and a δ13C(cDCE) of -26.5 to -11.82. The range in values indicate varying degrees of degradation throughout the site, with the same wells grouping together. Combined chemical, redox and isotopic data shows that degradation seems to be a removal process for TCE at the Smithville site. Concentrations of chemicals created as a result of TCE degradation verify degradation, especially in wells 15S9, R7 and 17S9. Historically production of DCE in significant amounts, above 1.0 ppb, was observed to only occur after 2003. In addition to this, DCE data shows that the percentage of DCE made up of cDCE is above 96%. This indicates that microbes most likely mediate the processes that formed DCE from TCE. The linear regression of the delta-delta plot for isotopic TCE data shows line that is likely a direct function of the carbon and chlorine isotopic fractionation imparted upon the original TCE released. The slope found is consistent with data collected from other studies though cannot be applied to determining the process directly given the range of variability in isotopic field data.
25

Heterogeneity-Induced Channelling, Flow-Wetted Surface, and Modelling of Transport in Fractured Rock

Larsson, Martin January 2012 (has links)
Heterogeneities in fractured rock are found at all scales; from the scale of individual fractures, to the scale of fracture networks, and to the largest regional scales. These heterogeneities cause challenges for modelling and parameter estimation of flow and solute transport. The heterogeneities in fracture aperture, characterization of the flow channelling they are causing, and implementation of this information into numerical simulation models of the solute transport in fractured media are the subjects of this thesis. Aperture variability within a fracture causes the flow channelling, where the water flow is focused in a few channels and other areas of the fracture have practically stagnant water. The flow-wetted surface is the area where the flowing water is in contact to the fracture area. Contaminants are transported with the flowing water and therefore the flow-wetted surface is an important parameter that influences the diffusion into the rock matrix and sorption to the fracture rock surface. The specific flow-wetted surface (sFWS) is the flow-wetted surface divided by the total fracture area. The sFWS is systematically analyzed for different fracture aperture distribution characteristics. The local aperture is linked to the local hydraulic conductivity K. Increasing standard deviation of the hydraulic conductivity K field (σln K) leads to decreased sFWS. The sFWS is found to be independent of the correlation length (λ) of the field. An empirical relationship is developed, which describes the sFWS as a function of the σln K. A method is also introduced to determine this key parameter by analysis of the breakthrough curve from a single-well injection-withdrawal (SWIW) test. Further, an approach is presented to incorporate the effect of fracture level heterogeneity into fracture network models and to analyze the effect on sorption and matrix diffusion, by including the sFWS parameter into the transport calculations. The results show that the median transport time is proportional to the square of the sFWS-value. The results also suggest that there are an averaging behaviour in the fracture network, the sFWS-value of each individual fracture is not important for the transport over the domain, but a mean-value can be utilized in the numerical model. / Heterogeniteter i sprickigt berg finns i alla skalor, från millimeterskala till en skala på hundratals kilometer. Dessa heterogeniteter orsakar problem vid beräkning av vattenflöde och ämnestransport. Aperturen i en spricka är öppningen mellan de två omslutande bergsidorna, den varierar både inom och mellan olika sprickor. Ämnet för denna avhandling är heterogeniteter i aperturerna inom enskilda sprickor, karaktärisering av den flödeskanalisering som uppstår på grund av dessa heterogeniteter och hur man kan använda denna information till en numerisk modell.Variabilitet av aperturen i en enskild spricka gör att vattenflödet blir fokuserat i ett fåtal kanaler, medan andra områden av sprickan kan ha praktiskt taget stillastående vatten. Den flödesvätta ytan är det område där det strömmande vattnet kommer i kontakt med sprickytan. Den flödesvätta ytan som påverkar diffusionen in i bergmatrisen och sorptionen till sprickytan är en viktig parameter eftersom föroreningar transporteras med det strömmande vattnet. Den specifika flödesvätta ytan (sFWS) är den flödesvätta ytan dividerad med den totala sprickarean. I avhandlingen analyserades sFWS systematiskt för olika statistik över sprickaperturen. Den lokala aperturen är kopplad till den lokala hydrauliska konduktiviteten K. En ökad standardavvikelse för det hydrauliska konduktivitetsfältet (σln K) ledde till minskad sFWS. sFWS visades vara oberoende av konduktivitetsfältets korrelationslängd (λ). En empirisk relation utvecklades som beskriver sFWS som en funktion av σln K. Ett SWIW-test är en typ av spårämnesförsök, där ett spårämne injiceras i en brunn följt av vatten i en bestämd tidsperiod, innan flödet vänds och en genombrottskurva registreras. Testet används traditionellt för att bestämma bergets diffusions- och sorptionsegenskaper. En metod presenterades för att bestämma den specifika flödesvätta ytan genom analys av genombrottskurvan för ett SWIW-test. Ett tillvägagångssätt introducerades för att analysera effekterna av sorption och matrisdiffusion i heterogena sprickor i en spricknätverksmodell genom att inkludera sFWS-parametern i transportberäkningar. Resultaten visade att medianvärdet för transporttiden är proportionell mot kvadraten på sFWS-värdet. Resultaten visade också att transporten genom spricknätverket inte är beroende av sFWS-värdet i de individuella sprickorna, utan att medelvärdet kan användas för modellering.
26

Korrelationer mellan meteorologiska händelser och hydrologiska responser i djupt berg / Correlations between Meteorological Events and Hydrological Responses in Deep Boreholes

Larson, Kristin January 2015 (has links)
This thesis presents a closer look at correlations between major meteorological events and groundwater level responses observed in deep boreholes drilled in the bedrock at Forsmark, which is situated ca. 120 km north of Stockholm in the Fennoscandian Shield, Sweden. Understanding how large geological structures are hydraulically connected to the surface is of great importance as a repository for spent nuclear fuel is intended to be built in Forsmark. Understanding monitoring data under natural conditions gives greater knowledge of how the hydrogeological system near the surface might be affected during the construction, operation and closing phases of the repository.The hydrological monitoring of each borehole is performed in intervals (sections), i.e., the ground-water levels in the bedrock are measured at different depths. At the different depths, changes in pressure from different meteorological events is measured. A major precipitation event was recorded during a few hours between 21 and 22 September 2014. Groundwater level responses in four deep drill holes show different reaction rates and magnitudes depending on borehole location, the structures they inter-sect, and depth in the bedrock. Furthermore, the properties of the deformation zones determine how the groundwater levels respond to meteorological events. Previous work reveals that gently dipping defor-mation zones have higher hydraulic diffusivity than the steeply dipping deformation zones.Two major air pressure events combined with groundwater level reactions in two deep bedrock bore-holes were also analysed. A lowering of the air pressure resulted in a higher sea level, which is seen in the boreholes as an increase in the groundwater level and vice versa.Clear responses from meteorological events are seen where boreholes intersect gently dipping deformation zones that leads all the way up to the ground surface. / Syftet med examensarbetet är att studera korrelationer mellan diskreta meteorologiska händelser och responser hos grundvattennivåerna i djupa borrhål i kristallint berg. Undersökningsområdet är berggrun-den i Forsmark, Östhammars kommun, ca 120 km norr om Stockholm. Ett framtida slutförvar för använt kärnbränsle är planerat att byggas där och stora mängder meteorologisk, hydrologisk och geologiska data har tagits fram i detta område av Svensk Kärnbränslehantering AB (SKB). SKB har bland annat en meteorologisk mätstation och stort antal djupa borrhål med ett flertal tryckgivare i varje borrhål. Borr-hålens medellängd är ca 700 m.Tidigare undersökningar i området redovisar exempel på korrelationer mellan nederbörd och grund-vattennivånresponser i berggrunden. Hydrauliska responser har också observerats vid flera interferens-tester i området. Ett intressant exempel på korrelation mellan nederbörd och grundvattennivå är att tryck-förändringar kan skönjas 500 m ner i berget längs med flacka deformationszoner. Ett annat exempel är en korrelation mellan skillnader i lufttryck och responser i ett djupt borrhål som ligger ca 500 meter från havet. Skillnader i lufttryck mellan Sverige och Finland skapar förändringar i havsytans nivå. Högtryck i Finland och lågtryck i Sverige ger en ökad havsytenivå vid Sveriges kust och detta påverkar vatten-trycket i djupa borrhål där dessa korsar deformationszoner som finns både under hav och land. Ett slags vågsystem ute i havet kunde ses som ökat och minskat vattentryck i ett borrhål på land.I detta arbete har en djupare undersökning av kopplingar mellan nederbörd och lufttryckprocesser på land och responser i djupt berg gjorts. Vid studier av insamlade data har korrelationer mellan meteoro-logiska och hydrologiska pulser på ytan och responser i djupa borrhål påträffats. Fyra kärnborrhål, KFM02A, KFM06A, KFM10A och KFM03A, utspridda i området, påvisar dessa samband.Tydliga responser i grundvattennivåer sker i berget där borrhålen korsar deformationszoner som går ända upp till markytan. Skillnad i respons kan också ses beroende på om de korsande deformations-zonerna är brant stupande eller svagt stupande. Svagt stupande deformationszoner har en högre hydraulisk diffusivitet än de brant stupande och detta beror bland annat på storleksskillnader i horisontella och vertikala spänningar. Kontrasten i spänningarna håller de svagt stupande zonerna öppna vilket resulterar i en hög hydraulisk diffusivitet.
27

Development of local sampling and monitoring protocol for radioactive elements in fractured rock Acquifers in South Africa using a case study in Beaufort West

Mahed, Gaathier January 2009 (has links)
Magister Scientiae - MSc / The aim of this study was to test whether one could use the same methods as used for sampling heavy metals and apply them to radioactive elements. Furthermore a sampling protocol was developed, the first of its kind, for the sampling of radioactive elements in fractured rock aquifers. This was achieved by initially examining local as well as international manuals and methods. The aforementioned was done in conjunction with a literature review of the movement of radioactive elements in these fractured rock aquifers. Beaufort West was utilised as a study area and the geology, hydrogeology and topography was outlined. Background radioactivity was generally acceptable except for two samples which were anomalously high. Taking cognisance of the methods used, as well as those previously applied in the area and abroad, a sampling protocol for radioactive elements in fractured rock aquifers was developed and attached as an appendix. In conclusion it was suggested that multiple methods be tested on one well in order to check whether similar results would occur. This would thus determine the best applicable methods. Also it was proposed that a new method, called DGT sampling, be applied in order to gain a time weighted average of the heavy metals and radioactive elements in groundwater. It could also be clearly seen, by comparing historical data and the current data, that the methods used for sampling heavy metal can be applied to radioactivity. / South Africa
28

Testing and evaluation of artesian aquifers in Table Mountain Group aquifers

Sun, Xiaobin January 2014 (has links)
Philosophiae Doctor - PhD / The Table Mountain Group (TMG) Aquifer is a huge aquifer system which may provide large bulk water supplies for local municipalities and irrigation water for agriculture in the Western Cape and Eastern Cape Provinces in South Africa. In many locations, water pressure in an aquifer may force groundwater out of ground surface so that the borehole drilled into the aquifer would produce overflow without a pump. Appropriate testing and evaluation of such artesian aquifers is very critical for sound evaluation and sustainable utilization of groundwater resources in the TMG area. However, study on this aspect of hydrogeology in TMG is limited. Although the flow and storage of TMG aquifer was conceptualised in previous studies, no specific study on artesian aquifer in TMG was made available. There are dozens of flowing artesian boreholes in TMG in which the pressure heads in the boreholes are above ground surface locally. A common approach to estimate hydraulic properties of the aquifers underneath is to make use of free-flowing and recovery tests conducted on a flowing artesian borehole. However, such testing approach was seldom carried out in TMG due to lack of an appropriate device readily available for data collection. A special hydraulic test device was developed for data collection in this context. The test device was successfully tested at a flowing artesian borehole in TMG. The device can not only be used to measure simultaneous flow rate and pressure head at the test borehole, but also be portable and flexible for capturing the data during aquifer tests in similar conditions like artesian holes in Karoo, dolomite or other sites in which pressure head is above ground surface. The straight-line method proposed by Jacob-Lohman is often adopted for data interpretation. However, the approach may not be able to analyse the test data from flowing artesian holes in TMG. The reason is that the TMG aquifers are often bounded by impermeable faults or folds at local or intermediate scale, which implies that some assumptions of infinite aquifer required for the straight-line method cannot be fulfilled. Boundary conditions based on the Jacob-Lohman method need to be considered during the simulation. In addition, the diagnostic plot analysis method using reciprocal rate derivative is adapted to cross-check the results from the straight-line method. The approach could help identify the flow regimes and discern the boundary conditions, of which results further provide useful information to conceptualize the aquifer and facilitate an appropriate analytical method to evaluate the aquifer properties. Two case studies in TMG were selected to evaluate the hydraulic properties of artesian aquifers using the above methods. The transmissivities of the artesian aquifer in TMG range from 0.6 to 46.7 m2/d based on calculations with recovery test data. Storativities range from 10-4 to 10-3 derived from free-flowing test data analysis. For the aquifer at each specific site, the transmissivity value of the artesian aquifer in Rawsonville is estimated to be 7.5–23 m2/d, with storativity value ranging from 2.0×10-4 to 5.5×10-4. The transmissivity value of the artesian aquifer in Oudtshoorn is approximately 37 m2/d, with S value of 1.16×10-3. The simulation results by straight-line and diagnostic plot analysis methods, not only imply the existence of negative skin zone in the vicinity of the test boreholes, but also highlight the fact that the TMG aquifers are often bounded by impermeable faults or folds at local or intermediate scale. With the storativity values of artesian aquifers derived from data interpretation, total groundwater storage capacity of aquifers at two case studies was calculated. The figures will provide valuable information for decision-makers to plan and develop sustainable groundwater utilization of artesian aquifers in local or intermediate scales. With the hydraulic test device readily available for data collection, more aquifer tests can be carried out in other overflow artesian boreholes in TMG. It becomes feasible to determine the hydraulic properties of artesian aquifers for the entire TMG. Thereof quantification of groundwater resources of artesian aquifers in TMG at a mega-scale becomes achievable. This would also contribute towards global research initiative for quantification of groundwater resources at a mega-scale.
29

Transport mechanisms of uranium and thorium in fractured rock aquifers

Van Wyk, Yazeed 24 June 2011 (has links)
The Karoo has been receiving considerable attention since the early 1970’s when uranium mining was at its peak, with numerous research studies being instigated to look at all aspects of uranium mining. It has recently been observed that there seems to be resurgence in uranium exploration in and around the town of Beaufort West. A study on the transport mechanisms of uranium and thorium in fractured-rock aquifers, initiated in the hope of understanding the actual processes controlling radionuclide mobilisation, is reported here. Hydrochemical investigations of the various boreholes were sampled for water quality in June, 2009. The hydrochemical description is typical of shallow fresh groundwater, changing composition to a more sulphate hydrochemical facies along the flow path. While the geochemistry of groundwater in the study area seems to have minimal effects on uranium concentrations, the low levels of uranium in boreholes sampled suggest the importance of hydrological and lithological variability on the measured concentrations. Nevertheless, the uranium concentration is within the recommended levels as specified in the US-EPA, WHO and SA water quality guidelines and thus poses no immediate threat to the general public. Analysis of pumping and tracer tests, reveals that the fractured-rock aquifer can be highly transmissive and that transport can take place via multiple flow paths having different hydraulic properties. Tracer diffusing into stagnant water zones within fracture asperities and the rock matrix are seen as an important retardation mechanism, that has implications for remediation should the aquifer be contaminated by radionuclides. In terms of conceptualising flow at a local scale, aperture sizes ranging from (563-828ìm) along with high flow velocities (1.90E-03m/s), points to the importance of bedding-plane fractures as conduits of groundwater flow. The groundwater flow has been influenced by dolerite dykes creating compartments isolated from each other, suggesting a highly complex aquifer system. Based on the conceptual model, it is shown that these structures can create unique, site specific flow conditions. The integration of all available data into the conceptual model provides an effective research tool that can be built upon as a basis for further research. / Dissertation (MSc)--University of Pretoria, 2010. / Geology / unrestricted
30

Using Fracture Flow Modeling to Understand the Effectiveness of Pump and Treat Remediation in Dual Permeability Media

Rodack, Haley Elizabeth January 2015 (has links)
Pump and treat remediation is the most commonly used method to remediate contaminated aquifers, but the effectiveness decreases when heterogeneities are introduced. Fractures within the matrix cause large differences in hydraulic conductivity. The low hydraulic conductivity of the matrix acts as an area of storage for contaminant, allowing for attenuation of the plume. The attenuation of the plume causes the effectiveness of the system to decrease and cost of remediation to increase. In order to understand what parameters enhance contaminant storage in the matrix, rapid transport in fractures, and both of their influences on the efficiency of the pumping system, a hypothetical model was developed to simulate the release and remediation of a plume using pumping. The code used was HydroGeoSphere, which allowed for the interpretation of parameters influencing contaminant storage during the withdrawal phase of the pump and treat remediation by allowing transport of contaminant within both the matrix and the fractures. Matrix parameters of porosity and hydraulic conductivity influenced the effectiveness of the withdrawal system most. For instance, the difference in percent mass extracted between porosity values of 0.01 and 0.4 was 23.75%, while the difference between fracture lengths of 200 and 400 m was 5.59%. Fracture pattern influenced where the stored contaminant was located within the matrix. Downgradient of the source, six different fracture patterns resulted in a difference in relative concentration of 0.4 at the start of the withdrawal phase. Evaluation of remediation included both percent extraction of contaminant and finer scale remediation of the contaminant specifically within the matrix. Multiple length-scale observations helped determine how fracture and matrix parameters influence remediation in dual permeability media. / Geology

Page generated in 0.0379 seconds