Spelling suggestions: "subject:"alframework matematerials"" "subject:"alframework datenmaterials""
1 |
Novel framework materials : organically templated silicogermanates and hybrid fluorotitanatesTang, Liqiu January 2005 (has links)
<p>Two types of novel framework materials, including six organically templated silicogermanates and five hybrid fluorotitanates, have been synthesized, and their structures have been determined by single crystal X-ray diffraction. Their structures and the interactions between the organic and inorganic species are discussed in some detail.</p><p>The frameworks of the six silicogermanates, SU-9, SU-10, SU-11, SU-12, SU-14 and SU-21, are built up from either tetrahedra exclusively, or from mixed polyhedra. SU-9, SU-10 and SU-11 consist only of tetrahedra, and SU-12, SU-14 and SU-21 are built up from mixed polyhedra. In all silicogermanates, Si and Ge share the tetrahedrally coordinated positions, and only Ge occupies the 5- and 6-coordinated positions.</p><p>The frameworks of SU-9, SU-10 and SU-11 belong to zeolite frameworks. SU-9 and SU-10 are built up from the same periodic building units (PBUs) that are formed by 4/4-4 units, and they adopt the known zeolite framework types AST and ASV, respectively. SU-11 is built up from 5-1 units and adopts the known zeolite framework type MFI. This is the first time that the frameworks of AST, ASV and MFI have been prepared in silicogermanate form.</p><p>The 3-D frameworks of SU-12 and SU-14 contain (Ge,Si)<sub>7</sub> composite building units that form one-dimensional 24-ring channels along the <i>c</i> axis. Their structures contain intersecting channels. SU-12 contains 8-, 10- 12- and 24-ring channels; while SU-14 has 9-, 10-, 12- and 24-ring channels. SU-21 is a two-dimensional framework structure containing 10-ring channels. It is the first silicogermanate with the template covalently bonded to Ge.</p><p>All silicogermanates were synthesized by using organic amines as templates. The templates play a very important role in directing the structure of the inorganic framework.</p><p>The obtained five hybrid fluorotitanates are SUF-1, SUF-2, SUF-3, SUF-4 and SUF-5. Their hybrid frameworks are built up from fluorotitanate anions, N-containing cations and crystal water/oxonium cations. Zero-dimensional fluorotitanate clusters are normally obtained when cyclic organic amines such as 1,4-diazabicyclo[2,2,2]octane (DABCO) and piperazine are used. Increasing the pH value of the starting solutions led to more condensed fluorotitanate anions, from isolated octahedra to pairs and eventually chains of octahedra. The formation of the hybrid frameworks of fluorotitanates is strongly dependent on hydrogen bonds between the fluorotitanate anions, N-containing organic cations and water molecules/oxonium ions.</p>
|
2 |
Novel framework materials : organically templated silicogermanates and hybrid fluorotitanatesTang, Liqiu January 2005 (has links)
Two types of novel framework materials, including six organically templated silicogermanates and five hybrid fluorotitanates, have been synthesized, and their structures have been determined by single crystal X-ray diffraction. Their structures and the interactions between the organic and inorganic species are discussed in some detail. The frameworks of the six silicogermanates, SU-9, SU-10, SU-11, SU-12, SU-14 and SU-21, are built up from either tetrahedra exclusively, or from mixed polyhedra. SU-9, SU-10 and SU-11 consist only of tetrahedra, and SU-12, SU-14 and SU-21 are built up from mixed polyhedra. In all silicogermanates, Si and Ge share the tetrahedrally coordinated positions, and only Ge occupies the 5- and 6-coordinated positions. The frameworks of SU-9, SU-10 and SU-11 belong to zeolite frameworks. SU-9 and SU-10 are built up from the same periodic building units (PBUs) that are formed by 4/4-4 units, and they adopt the known zeolite framework types AST and ASV, respectively. SU-11 is built up from 5-1 units and adopts the known zeolite framework type MFI. This is the first time that the frameworks of AST, ASV and MFI have been prepared in silicogermanate form. The 3-D frameworks of SU-12 and SU-14 contain (Ge,Si)7 composite building units that form one-dimensional 24-ring channels along the c axis. Their structures contain intersecting channels. SU-12 contains 8-, 10- 12- and 24-ring channels; while SU-14 has 9-, 10-, 12- and 24-ring channels. SU-21 is a two-dimensional framework structure containing 10-ring channels. It is the first silicogermanate with the template covalently bonded to Ge. All silicogermanates were synthesized by using organic amines as templates. The templates play a very important role in directing the structure of the inorganic framework. The obtained five hybrid fluorotitanates are SUF-1, SUF-2, SUF-3, SUF-4 and SUF-5. Their hybrid frameworks are built up from fluorotitanate anions, N-containing cations and crystal water/oxonium cations. Zero-dimensional fluorotitanate clusters are normally obtained when cyclic organic amines such as 1,4-diazabicyclo[2,2,2]octane (DABCO) and piperazine are used. Increasing the pH value of the starting solutions led to more condensed fluorotitanate anions, from isolated octahedra to pairs and eventually chains of octahedra. The formation of the hybrid frameworks of fluorotitanates is strongly dependent on hydrogen bonds between the fluorotitanate anions, N-containing organic cations and water molecules/oxonium ions.
|
3 |
Inorganic and Metal-Organic Framework Materials : Synthesis and structure characterizationLiu, Leifeng January 2014 (has links)
Inorganic and metal-organic framework materials possessing accessible and permanent pores are receiving tremendous attention. Among them, zeolites are the most famous class due to their wide applications on petrochemistry and gas separation. Besides zeolites, the other oxide framework materials are also intensively investigated because of their diverse structures and compositions. Metal-organic frameworks are built from metal clusters and organic linkers. By rational designing the reagent, the network with desired topology and functionality can be synthesized. For all of the framework materials mentioned above, to explore novel framework structures is important for improving properties and discovering new applications. This thesis includes the synthesis of zeolites and structure characterization for various types of inorganic framework materials. The zeolite synthesis conditions was exploited. With the optimized condition, the zeolite ITQ-33 was synthesized as single crystals. From the single crystal X-ray diffraction data, the disorder in the structure is discovered and explained. Following the topic of disorder and twinning, we proposed a novel method of solving structure of pseudo-merohedric twinning crystal by using an example of a metal-organic complex crystal. Then we also showed methods for solving structures of high complexity and nano-crystal by using mainly powder X-ray diffraction and transmission electron microscopy. Four examples were shown in chapter 4 including open-framework germanates and metal-organic frameworks. / <p>At the time of the doctoral defence the following paper was unpublished and a status as follows: Paper 4: Manuscript</p>
|
4 |
Novel phosphors for solid state lightingFurman, Joshua D. January 2010 (has links)
Solid state white light emitting diode lighting devices outperform conventional light sources in terms of lifetime, durability, and lumens per watt. However, the capital contribution is still to high to encourage widespread adoption. Furthermore, the colour from today's devices is unsuitable for general room illumination and thus new phosphor materials are needed. This dissertation will examine the synthesis of inorganic nanoparticles and the possibility of using hybrid inorganic-organic frameworks in the search for new lighting phosphors. Nanoparticles of the oxide compound yttrium aluminium garnet were synthesized using an emulsion technique, though it was found that the high temperature processing needed for good optical properties was not compatible with maintaining nanosized particles. In terms of hybrid framework phosphors, several aspects of this new area have been explored. The mechanical and optical properties of a dense cerium oxalate formate hybrid framework compound have been investigated. Its strength was found to be nearly as great as some classical ceramic compounds, and clearly robust enough for device applications. While the photoluminescence of the cerium oxalate formate was not suitable for solid state lighting, the impressive mechanical properties evaluated are expected to be valid for a wide range of dense inorganic-organic frameworks. A novel approach to solid state lighting phosphors was introduced by using ligand-based photoluminescence in hybrid frameworks. Novel frameworks were prepared using 9,10-anthraquinone-2,3-dicarboxylic acid in combination with calcium, manganese, nickel, and zinc. These compounds show excellent photoluminescent emission for use in solid state lighting applications, although the luminescence is quenched at room temperature due to dynamic effects. The excitation, while reaching the blue part of the spectrum, falls just short of what is needed for use today's devices. To address these issues, a second class of novel framework compounds was prepared using 9-fluorenone-2,7-dicarboxylic acid in combination with calcium, strontium, barium, cadmium, and manganese. They are more rigid structures and show good luminescence at room temperature with a photoluminescent excitation spectrum extending further into the blue than the anthraquinones. Additionally, quantum yield in the calcium fluorenone is nearly double that of its parent ligand, suggesting that there is an enhancement in luminescent properties as a result its inclusion in a framework structure. An explanation for the differences in efficiency between seemingly similar compounds are drawn from their compositions, crystal structures, photoluminescence, and specific heat properties. Finally, some structural and chemical targets for future hybrid phosphor development are identified based on the relationships identified in this work.
|
5 |
Electronic Devices Using Open Framework MaterialsFeng, Xinliang, Allendorf, Mark D., Dong, Renhao, Kaskel, Stefan, Matoga, DariusZ, Stavila, Vitalie 05 August 2022 (has links)
Open framework materials (OFM) constitute a large and growing class of nanoporous crystalline structures that is attracting considerable attention for electronic device applications. This review summarizes the most recent reports concerning electronic devices enabled by either of the two primary categories of OFM, metal–organic frameworks (MOFs) and covalent–organic frameworks (COFs). Devices in which the OFM plays an active role (as opposed to acting only as a selective sorbent or filter) are the principal focus, with examples cited that include field-effect transistors, capacitors, memristors, and a wide variety of sensing architectures. As a brief tutorial, we also provide a concise summary of various methods of depositing or growing OFM on surfaces, as these are of crucial importance to the deployment of electronic OFM. Finally, we offer our perspective concerning future research directions, particularly regarding what in our view are the biggest challenges remaining to be addressed. On the basis of the literature discussed here, we conclude that OFM constitute a unique class of electronic materials with characteristics and advantages that are distinct from either conventional inorganic semiconductors or organic conductors. This suggests a bright future for these materials in applications such as edge computing, resistive switching, and mechanically flexible sensing and electronics.
|
6 |
Development of novel supramolecular framework materials based on organic saltsWahl, Helene 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: The aim of the work presented in this thesis was to design ionic organic framework materials based on carboxylate salts with the intention of engineering interesting properties, such as porosity, into these framework materials.
The first section focuses on the characterisation and porosity studies of an ionic framework material, 3,4-lutidinium pamoate hemihydrate, with THF-filled channels in the solid state. It was shown that this framework is able to exchange the THF in the channels for a wide variety of compounds, with many of these exchanges occurring in a single-crystal to single-crystal fashion. Competition experiments conducted with the framework, both by immersing crystals of the framework in solvent mixtures, as well as by exposing crystals of the framework to mixtures of solvent vapours, indicated that it is able to selectively exchange for one guest over another. The kinetics of exchange of this framework were studied, and it was possible to identify a kinetic model describing this process.
A second novel framework-type material, 4-phenylpyridinium pamoate, was identified during the course of this study, as well as five isostructural frameworks containing different guest molecules. In this case the framework consists of discrete units that close-pack in such a way that guest molecules are included in constricted cavities in the solid state. Although this framework-type material is not porous, it is thermally quite stable and also highly selective. It is able to selectively encapsulate 1,4-dioxane when crystallised from various solvent combinations including 1,4-dioxane. In addition, eight novel structures with pamoic acid in combination with various pyridyl derivatives were obtained.
A third novel framework material was obtained with N,N'-bis(glycinyl)pyromellitic diimide in which, due to the extended hydrogen-bonded network formed between the constituents of the framework, DMF molecules are aligned in channels. It was found that this framework material can also be formed by mechanochemical synthesis, and investigation of the thermal behaviour of this framework showed that it has the potential to be porous, since the framework appears to remain intact after desolvation. Furthermore, six novel structures with N,N'- bis(glycinyl)pyromellitic diimide in combination with various N-heterocycles were obtained.
All structures obtained in this study were also further analysed to determine whether there are particular structural features that are required for framework formation. Insights gained from these investigations, in terms of degree of ionisation of the anion, packing arrangements and hydrogen bonding patterns as well as the molecular shape of the components are discussed. / AFRIKAANSE OPSOMMING: Die doel van die werk wat in hierdie tesis voorgelê word is om ioniese organiese raamwerkmateriale gebaseer op karboksilaatione te ontwerp, met die voorneme om interessante eienskappe in hierdie materiale te bewerkstellig.
Die eerste afdeling fokus op die karakterisering en porositeit van ‘n ioniese organiese raamwerkmateriaal, 3,4-lutidiniumpamoaathemihidraat, wat kanale gevul met tetrahidrofuraan (THF) besit. Dit is aangetoon dat dit moontlik is vir hierdie raamwerkmateriaal om die THF in die kanale te verruil vir ‘n wye verskeidenheid stowwe, waarvan baie van hierdie uitruilings geskied as ‘n enkelkristal tot enkelkristal transformasie. Kompetisie-eksperimente is met hierdie raamwerkmateriaal uitgevoer deur die kristalle in mengsels van oplosmiddels te onderdompel, sowel as deur die kristalle aan mengsels van die oplosmiddeldampe bloot te stel. Die resultate het aangedui dat dit moontlik is vir hierdie raamwerkmateriaal om een gasstof selektief teenoor ‘n ander te verruil vir die THF in die kanale. Die kinetika van die uitruilingsproses van hierdie materiaal is ook bestudeer en dit was moontlik om ‘n kinetiese model te identifiseer wat die uitruilingsproses beskryf.
‘n Tweede nuwe raamwerk-tipe materiaal, 4-fenielpiridiniumpamoaat, is deur die loop van hierdie studie geïdentifiseer, sowel as vyf isostrukturele raamwerkmateriale waarvan net die gasstof verskil. In hierdie geval bestaan die raamwerk uit diskrete eenhede wat op so ‘n wyse saampak dat die gasstowwe in vernoude porieë ingesluit word. Alhoewel hierdie raamwerk-tipe materiaal nie poreus is nie, is dit termies stabiel en ook hoogs selektief. Die raamwerkmateriaal kan selektief 1,4-dioksaan enkapsuleer wanneer dit gekristalliseer word vanuit ‘n verskeidenheid oplosmiddel kombinasies met 1,4-dioksaan. Verder is agt nuwe strukture verkry met die pamoaat ioon in kombinasie met ‘n verskeidenheid piridien-derivate.
‘n Derde nuwe raamwerkmateriaal is verkry met N,N'-bis(glisiniel)piromellitiese diïmied waarin, danksy die uitgebreide waterstofgebinde netwerk tussen die komponente van die raamwerk, die DMF molekules in kanale aangetref word. Hierdie raamwerkmateriaal kan deur meganochemiese sintese berei word en verdere ondersoek na die termiese gedrag van hierdie raamwerkmateriaal dui aan dat dit die potensiaal het om porositeit te toon, aangesien die raamwerk behoue bly nadat die DMF molekules verwyder is. Ses nuwe strukture is ook met N,N'-bis(glisiniel)piromellitiese diïmied in kombinasie met ‘n wye verskeidenheid stikstof-bevattende heterosikliese verbindings verkry.
Alle strukture wat tydens hierdie studie verkry is, is verder ondersoek om te bepaal of daar spesifieke strukturele kenmerke is wat benodig word vir die vorming van raamwerkmateriale. Insigte wat verkry is vanuit hierdie ondersoeke, in terme van die graad van ionisasie van die anioon, die rangskikking van molekules in die struktuur en waterstofbindingspatrone, sowel as die molekulêre vorm van die komponente, word bespreek.
|
7 |
Zeolites: Structural Properties and Benchmarks of FeasibilityJanuary 2013 (has links)
abstract: Zeolites are a class of microporous materials that are immensely useful as molecular sieves and catalysts. While there exist millions of hypothetical zeolite topologies, only 206 have been recognized to exist in nature, and the question remains: What distinguishes known zeolite topologies from their hypothetical counterparts? It has been found that all 206 of the known zeolites can be represented as networks of rigid perfect tetrahedra that hinge freely at the connected corners. The range of configurations over which the corresponding geometric constraints can be met has been termed the "flexibility window". Only a small percentage of hypothetical types exhibit a flexibility window, and it is thus proposed that this simple geometric property, the existence of a flexibility window, provides a reliable benchmark for distinguishing potentially realizable hypothetical structures from their infeasible counterparts. As a first approximation of the behavior of real zeolite materials, the flexibility window provides additional useful insights into structure and composition. In this thesis, various methods for locating and exploring the flexibility window are discussed. Also examined is the assumption that the tetrahedral corners are force-free. This is a reasonable approximation in silicates for Si-O-Si angles above ~135°. However, the approximation is poor for germanates, where Ge-O-Ge angles are constrained to the range ~120°-145°. Lastly, a class of interesting low-density hypothetical zeolites is evaluated based on the feasibility criteria introduced. / Dissertation/Thesis / Ph.D. Physics 2013
|
8 |
Organically-Templated Open-Framework And Hybrid MaterialsBehera, Jogendra Nath 12 1900 (has links)
Open-framework inorganic and inorganic-organic hybrid materials constitute an important area of study in materials chemistry, because of their potential applications in areas such as sorption and catalysis. Besides aluminosilicate zeolites, the metal phosphates and carboxylates constitute large families of open-framework structures. The possibility of building open architectures with the sulfate and selenate anions as the basic building units has been explored in this thesis. Investigations of a variety of open-framework metal sulfates and selenates, as well as a family of jarosites of different transition metals are
presented. More importantly, studies directed towards the synthesis and understanding of the magnetic properties of various Kagome compounds formed by the transition metal ions is discussed at length.
After providing an introduction to inorganic open-framework compounds (Part 1), the thesis presents the results of the investigations of various transition and rare earth metal sulfates with diverse structures and dimensionalities in Part 2. Some of these compounds show interesting properties. For example, a two-dimensional Ni(II) sulfate exhibits ferrimagnetism whereas a three-dimensional Ni(II) sulfate with 10-membered channels is paramagnetic. A family of three-dimensional co-ordination polymers of Co(II) sulfate wherein the Co(II) sulfate layers are linked by diaminoalkanes of varying chain length has been synthesized and characterized. Organically-templated neodymium and thorium sulfates with layered and three-dimensional structure have also been prepared.
The jarosite family of compounds with the Kagome structure is considered as an
ideal model for studying frustrated magnetism. This type of materials, however, is difficult to prepare in a pure and highly crystalline form. We have synthesized analogues of the jarosite containing magnetic ions other than Fe3+ by solvothermal techniques and discussed them in Part 3. In particular, we have prepared and explored the magnetic properties of Mn2+(S = 5/2), Fe2+ (S = 2), Co2+(S = 3/2) and Ni2+ (S = 1) jarosites. Based on the results presented, it becomes clear that the magnetic properties vary with the spin of the transition metal ion. It appears that those Kagome compounds with transition metalions with non-integer spins show antiferromagnetic interactions and magnetic frustration while those with integer spins exhibit ferro/ferrimagnetic properties. A theoretical study has also supports this observation. We have been able to isolate for the first time 1,4-diazacubane as the part of the structure of the nickel Kagome compound.
The possibility of building open architectures with the selenate anion as the basic building unit has been explored in Part 4. The results have been rewarding and an organically-templated three-dimensional lanthanum selenate with 12-membered channels
has thus been obtained for the first time.
|
9 |
Investigations Of Open-Framework Metal Phosphates, Phosphites And Phosphite-Oxalate MaterialsMandal, Sukhendu 08 1900 (has links)
Open-framework inorganic materials constitute an important area of study in materials chemistry, because of their potential applications in areas such as sorption and catalysis. After the discovery of nanoporous aluminium phosphates by Flanigen et al in 1982, there has been a tremendous growth in the area of porous solids. Most of them are based upon oxygen containing materials especially phosphates, and they exhibit fascinating architectures with unusual bonding and coordination environment. Besides metal phosphates and phosphites, inorganic-organic hybrids constitute an important family of open-framework structures. In this thesis, results of investigations of a variety of open-framework metal phosphates, metal phosphites, as well as a new family of phosphite-oxalates are presented. More importantly, studies directed towards the synthesis and understanding of the magnetic properties of various transition metal phosphates, phosphites, phosphite-oxalates and the upconversion behavior of uranium phosphites are discussed at length.
In Chapter 1 of the thesis an overview of inorganic open-framework materials is presented. In Chapter 2 and 3, the synthesis, structure of open-framework zinc (Part A of both Chapters) and synthesis, structure and magnetic properties of open-framework iron (Part B of both Chapters) are presented. Some of these compounds show unusual structure and interesting properties. For example, two-dimensional iron phosphate exhibits ferrimagnetism whereas three-dimensional iron phosphate with SBU-6 and SBU-2 is antiferromagnetic. The three-dimensional iron phosphite exhibits small polarization at low field.
In Chapter 4, we present a new family of organically templated hybrid materials synthesized by partially substituting the phosphite by the oxalate ion in manganese, iron and cobalt phosphites. These exhibit a wide range of structures in which the oxalates play an unusual dual role. Some of these compounds show interesting magnetic properties. For example, manganese phosphite-oxalate shows magnetic polarizations on application of high field at low temperatures and iron phosphite-oxalate exhibit ferromagnetism at very low temperature.
While a large number of organically templated transition and main-group element phosphites have been synthesized, research on lanthanide and actinide phosphites has been rare. Most of the reported open-framework phosphate and phosphite compounds of uranium possess uranium in +6 oxidation state. The possibility of building open architectures of uranium phosphites has been explored in Chapter 5. The results have been rewarding and both layered and three-dimensional structures have been prepared. Two of them contain uranium in +4 state and exhibit upconversion behavior.
|
10 |
New Anions In The Assembly Of The Open-Framework Compounds : Synthesis, Structure And PropertiesPaul, Avijit Kumar 07 1900 (has links) (PDF)
Open-framework inorganic materials constitute an important area of study in materials chemistry, because of their potential applications in areas such as sorption and catalysis. After the discovery of nanoporous aluminium phosphates (AlPOs) by Flanigen et al in 1982, there has been a tremendous growth in the area of porous solids that are based on phosphates. Apart from phosphates, phosphites, arsenates, sulfates, sulfites, selenates, selenites etc. have also been investigated. In addition to the different anions, the framework compounds now encompass almost all the elements of the periodic table. The compounds exhibit wide variety and structural diversity. New building units, such as thiosulfate and borate have also been explored as a network builder in the formation of framework structures. In this thesis, the results of the investigations on open-framework metal thiosulfates, metal borates and metal sulfates are presented. The studies are aimed not only at the synthesis of the new compounds based on the new anions, but also their possible applications.
In Chapter 1 of the thesis an overview of inorganic open-framework materials with different anions is presented. In Chapter 2 (Part A), the synthesis, structure and transformation of inorganic-organic hybrid open-framework cadmium thiosulfate are presented. The lack of stability of the thiosulfate ion in solution prompted the exploration of new approaches such as low temperature solvothermal methods, use of rigid linkers etc. The transformations of lower to higher dimensional structures have been accomplished. The possible mechanisms for such transformations were investigated. In Part B, the physical and chemical properties of the hybrid cadmium thiosulfate frameworks are presented. The studies indicate that the anionic dyes selectively adsorb on the compounds in the water medium and also desorb reasonably in alcoholic medium. The cadmium thiosulfate compounds appear to be reasonable photocalysts for the photodecomposition of the cationic dyes under UV irradiation as well as under sunlight with good recyclability. The compounds also exhibit heterogeneous catalytic behavior (Lewis acidity) for the cyanosilylation of the imines.
In Chapter 3, a new family of organically templated open-framework borate materials is presented. The zinc and aluminoborate structures, prepared in the present study, are rationalized using the HSAB theory. The [B4O9H2] units polymerize differently to form different zinc borate structures. The amine molecules act as a ligand by binding with the metal. The nature of the amine appears to control the dimensionality of the final zinc borate structures. The zinc borate compounds exhibit absorption of UV-light (λ = 365 nm) suggesting that the zinc borate compounds could be exploited for UV-blocking applications. Organically templated aluminoborates have connectivities between the Al3+ ions and the [B5O10] cyclic pentaborate units. The aluminoborate structures exhibit graphite layer and three-dimensional diamond structure. Detailed studies and comparison of the various amine templated open-framework aluminoborate structures reveals subtle relationships between the organic amines (shape and length of the amines) and the final framework structures.
In Chapter 3, the synthesis, structure and catalytic studies of a variety of cadmium sulfate phases have been carried out. Polyazaheterocyclic ligands were employed to study their possible role in the formation of such structures. All the compounds have structures built up by the connectivity involving the cadmium octahedra and the sulfate tetrahedra in which the heterocyclic organic molecules act as the ligand. The connectivity between the Cd2+ and (SO4)2− ions form one-, two-and three-dimensionally extended cadmium sulfate phases, though the starting source is cadmium sulfate (CdSO4.8/3H2O) in all the cases. The connectivity between Cd2+ ion and the heterocyclic ligand also gives rise to one-and two-dimensional structures. The interconnectivity between the two units gives rise to the final observed structure. As part of the study, a variety of properties i.e. adsorption-desorption, photocatalytic degradation and cyanosilylation reaction, exhibited by the cadmium sulfate compounds have been investigated and the properties are comparable to the cadmium thiosulfate phases.
AlPOs are well known for their many important properties. The wide varieties in their structures and heterogeneous catalytic properties have been extensively investigated. The photocatalytic behaviors, on the contrary, have not been investigated in detail. The photocatalytic properties of the metal-doped AlPOs, for the photodegrdation of organic dyes have been investigated in the Chapter 5. The metal ions (Mg2+, Zn2+ and Co2+) have been substituted in place of Al3+ and Ti4+ in place of both the Al3+ and P5+ in a variety in AlPO structures and the synthesized phases are characterized by a variety of techniques. Photodecomposition studies of organic dye molecules under UV-light were carried out in aqueous medium. The studies suggest that the photocatalytic activity is reasonable and appears to depend on the dopant concentration. Ti-substituted phase exhibits the maximum catalytic activity.
|
Page generated in 0.0889 seconds