• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • Tagged with
  • 9
  • 9
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Freeform Solar Concentrating Optics

Wheelwright, Brian January 2015 (has links)
Notwithstanding several years of robust growth, solar energy still only accounts for<1% of total electrical generation in the US. Before solar energy can substantially replace fossil fuels subsidy-free at utility scale, further cost reductions and efficiency improvements are needed in complete generating systems. Flat panel silicon PV modules are by far the most dominant solar technology today, but have little room for improvement in efficiency and are limited by balance of system costs. Concentrated PV (CPV) is an alternate approach with long-term potential for much higher efficiency in sunny climates. In CPV modules, large area optics collect and concentrate direct sunlight onto small multi-junction cells with>40% conversion efficiency. Concentrated Solar Power (CSP) uses mirrors to concentrate sunlight onto thermally absorbing receivers, which generate electricity with convention thermal cycles. In this dissertation, four new optical approaches to CPV and CSP with potential for lower cost are analyzed. Common to each approach is the use of large square glass reflectors, which have very low areal cost (~$35/m^2) and field-proven reliability in the CSP industry. Chapter 2 describes a freeform toroidal lens array used to intercept the low concentration line focus of a parabolic trough to produce multiple high concentration foci (>800X) for multi-junction cells. In Chapter 3, three embodiments of dish mirrors and freeform lenslet arrays are explored, including an off-axis system. In each case, a dish mirror illuminates a freeform lenslet array, which divides sunlight equally to a sparse matrix of multi-junction cells. The off-axis optical system achieves +/-0.45° acceptance angle and averages 1215X geometric concentration over 400 multi-junction cells. Chapter 4 proposes a new architecture for CSP central receivers that achieves extremely high collection efficiency (>70%) with unconventional heliostat field tracking. In Chapter 5, the design and preliminary testing of a spectrum-splitting hybrid PV/thermal generator is discussed. This system has the advantage of 'drop-in' capability in existing CSP trough plants and allows for thermal storage, an important mitigation to the intermittency of the solar resource.
2

Development Of The Depth-Fused Multi-Focal-Plane Display Technology

Hu, Xinda January 2014 (has links)
Conventional stereoscopic displays present a pair of stereoscopic images on a single and fixed image plane. In consequence, these displays lack the capability of correctly rendering focus cues (i.e. accommodation and retinal blur) and may induce the discrepancy between accommodation and convergence. A number of visual artifacts associated with incorrect focus cues in stereoscopic displays have been reported, limiting the applicability of these displays for demanding applications and daily usage. Depth-fused multi-focal-plane display was proposed to create a fixed-viewpoint volumetric display capable of rendering correct or nearly-correct focus cues in a stereoscopic display through a small number of discretely placed focal planes. It effectively addresses the negative effects of conventional stereoscopic displays on depth perception accuracy and visual fatigue. In this dissertation, the fundamental design methods and considerations of depth-fused displays were refined and extended based on previous works and a high-resolution optical see-through multi-focal-plane head-mounted display enabled by state-of-the-art freeform optics was developed. The prototype system is capable of rendering nearly-correct focus cues for a large volume of 3D space extending into a depth range from 0 to 3 diopters at flicker-free speed. By incorporating freeform optics, the prototype not only achieves high quality imagery across a large 3D volume for the virtual display path but it also maintains better than 0.5 arcminutes visual resolution of the see-through view. The optical design, implementation and experimental validation of the display are presented and discussed in detail.
3

Generalized Pupil Aberrations Of Optical Imaging Systems

Elazhary, Tamer Mohamed Tawfik Ahmed Mohamed January 2014 (has links)
In this dissertation fully general conditions are presented to correct linear and quadratic field dependent aberrations that do not use any symmetry. They accurately predict the change in imaging aberrations in the presence of lower order field dependent aberrations. The definitions of the image, object, and coordinate system are completely arbitrary. These conditions are derived using a differential operator on the scalar wavefront function. The relationships are verified using ray trace simulations of a number of systems with varying degrees of complexity. The math is shown to be extendable to provide full expansion of the scalar aberration function about field. These conditions are used to guide the design of imaging systems starting with only paraxial surface patches, then growing freeform surfaces that maintain the analytic conditions satisfied for each point in the pupil. Two methods are proposed for the design of axisymmetric and plane symmetric optical imaging systems. Design examples are presented as a proof of the concept.
4

Design, Fabrication and Metrology of Freeform Optical Elements

Zhou, Wenchen January 2020 (has links)
No description available.
5

Manufacturing of super-polished large aspheric/freeform optics

Kim, Dae Wook, Oh, Chang-jin, Lowman, Andrew, Smith, Greg A., Aftab, Maham, Burge, James H. 22 July 2016 (has links)
Several next generation astronomical telescopes or large optical systems utilize aspheric/freeform optics for creating a segmented optical system. Multiple mirrors can be combined to form a larger optical surface or used as a single surface to avoid obscurations. In this paper, we demonstrate a specific case of the Daniel K. Inouye Solar Telescope (DKIST). This optic is a 4.2 m in diameter off-axis primary mirror using ZERODUR thin substrate, and has been successfully completed in the Optical Engineering and Fabrication Facility (OEFF) at the University of Arizona, in 2016. As the telescope looks at the brightest object in the sky, our own Sun, the primary mirror surface quality meets extreme specifications covering a wide range of spatial frequency errors. In manufacturing the DKIST mirror, metrology systems have been studied, developed and applied to measure low-to-mid-to-high spatial frequency surface shape information in the 4.2 m super-polished optical surface. In this paper, measurements from these systems are converted to Power Spectral Density (PSD) plots and combined in the spatial frequency domain. Results cover 5 orders of magnitude in spatial frequencies and meet or exceed specifications for this large aspheric mirror. Precision manufacturing of the super-polished DKIST mirror enables a new level of solar science.
6

Exploration of Ray Mapping Methodology in Freeform Optics Design for Non-Imaging Applications

Ma, Donglin January 2015 (has links)
This dissertation investigates various design metrologies on designing freeform surfaces for LED illumination applications. The major goal of this dissertation is to study designing freeform optical surfaces to redistribute the radiance (which can be simplified as intensity distribution for point source) of LED sources for various applications. Nowadays many applications, such as road lighting systems, automotive headlights, projection displays and medical illuminators, require an accurate control of the intensity distribution. Freeform optical lens is commonly used in illumination system because there are more freedoms in controlling the ray direction. Design methods for systems with rotational and translational symmetry were well discussed in the 1930's. However, designing freeform optical lenses or reflectors required to illuminate targets without such symmetries have been proved to be much more challenging. For the simplest case when the source is an ideal point source, the determination of the freeform surface in a rigorous manner usually leads to the tedious Monge-Ampère second order nonlinear partial different equation, which cannot be solved with standard numerical integration techniques. Instead of solving the differential equation, ray mapping is an easier and more efficient method in controlling one or more freeform surfaces for prescribed irradiance patterns. In this dissertation, we investigate the ray mapping metrologies in different coordinate systems to meet the integrability condition for generating smooth and continuous freeform surfaces. To improve the illumination efficiency and uniformity, we propose a composite ray mapping method for designing the total internal reflective (TIR) freeform lens for non-rotational illumination. Another method called "double pole" ray mapping method is also proposed to improve system performance. The ray mapping designs developed for the point source do not work well for extended sources, we have investigated different design methodologies including optimization method, deconvolution method and feedback modification method to design freeform optical surfaces for extended sources.
7

Innovative focal plane design for high resolution imaging and earth observation : freeform optics and curved sensors / Aménagement de plans focaux pour l'imagerie haute résolution et l'observation de la terre : optiques freeform et détecteurs courbes

Jahn, Wilfried 05 December 2017 (has links)
Le besoin en haute performance en termes de qualité image, résolution et champ de vue accroît la complexité et le budget masse/volume des instruments optiques. Ces contraintes impactent toutes les applications: l’astronomie, la défense, les missions spatiales, la médecine, les objectifs d’appareil photos et caméras, les smartphones, les drones. Afin de résoudre cette problématique dans les instruments d’observation astronomique, je considère deux technologies : les optiques freeform et les détecteurs courbes, qui offrent une nouvelle ère pour le design de systèmes optiques.L’augmentation de la taille des télescopes en orbite basse est nécessaire pour atteindre une observation planétaire à haute résolution spatiale, ce qui implique des systèmes d’imagerie complexes et de grand plans focaux. L’utilisation de systèmes d’imagerie homothétiques aux satellites à défilement Spot et Pleiades mènerait à des dimensions de plans focaux prohibitifs, tout particulièrement pour des missions en infrarouge nécessitant un cryostat. Deux télescopes optiques sont présentés, ils utilisent un module de segmentation composé de miroirs freeform qui permet de réduire considérablement la dimension du plan focal. Les capteurs courbes permettent réduire de manière considérable la complexité des imageurs et des spectromètres en corrigeant directement l'aberration de courbure de champ en plan focal. Je présente des études comparatives sur des systèmes optiques grand champ depuis des champs de vue astronomiques jusqu’à celui du Fishseye, ainsi que les résultats obtenus avec nos deux prototypes d’objectif grand champ utilisant les premiers capteurs courbes CMOS visibles full-frame. / The need of high performance in terms of image quality, high resolution and wide field of view increases the complexity and the volume/mass budget of telescopes and their instruments. Such constraints concern also a wide range of applications: astronomy, defense and surveillance, space missions, biomedical imaging, camera objectives, smartphones, drones. To overcome these issues in astronomical instruments, I consider two technologies: freeform optics and curved sensors, offering a new era for the design of optical systems.Increasing the size of low-orbiting space telescopes is necessary to reach high resolution observation of planets, which implies more complex imaging systems and large focal planes. The use of homothetic imaging systems as Spot and Pleiades pushbroom satellites would lead to prohibitive large linear focal plane dimensions, especially for infrared missions requiring a cryostat. Two optical telescopes are presented, they use an image segmentation made of freeform mirrors which allows to reduce significantly the size of the focal plane. Curved sensors enable to reduce drastically the complexity of imagers and spectrometers by correcting the field curvature aberration directly in the focal plane. I present comparative studies on wide field optical designs from astronomical to Fisheye instruments and the results obtained with our two wide field imaging prototypes using the first visible full-frame CMOS curved sensors.
8

Thermal Forming Process for Precision Freeform Optical Mirrors and Micro Glass Optics

Chen, Yang 23 August 2010 (has links)
No description available.
9

Inverse Methods In Freeform Optics

Landwehr, Philipp, Cebatarauskas, Paulius, Rosztoczy, Csaba, Röpelinen, Santeri, Zanrosso, Maddalena 13 September 2023 (has links)
Traditional methods in optical design like ray tracing suffer from slow convergence and are not constructive, i.e., each minimal perturbation of input parameters might lead to “chaotic” changes in the output. However, so-called inverse methods can be helpful in designing optical systems of reflectors and lenses. The equations in R2 become ordinary differential equations, while in R3 the equations become partial differential equations. These equations are then used to transform source distributions into target distributions, where the distributions are arbitrary, though assumed to be positive and integrable. In this project, we derive the governing equations and solve them numerically, for the systems presented by our instructor Martijn Anthonissen [Anthonissen et al. 2021]. Additionally, we show how point sources can be derived as a special case of a interval source with di- rected source interval, i.e., with each point in the source interval there is also an associated unit direction vector which could be derived from a system of two interval sources in R2. This way, it is shown that connecting source distributions with target distributions can be classified into two instead of three categories. The resulting description of point sources as a source along an interval with directed rays could potentially be extended to three dimensions, leading to interpretations of point sources as directed sources on convex or star-shaped sets.:1 Abstract 4 2 Notation And Conventions 4 3 Introduction 5 4 ECMI Modeling Week Challenges 5 4.1 Problem 1 - Parallel to Near-Field Target 5 4.1.1 Description 5 4.1.2 Deriving The Equations 5 4.2 Problem 2 - Parallel Source To Two Targets 8 4.3 Problem 3 - Point Source To Near-Field Target 9 4.3.1 Deriving The Equations 9 4.4 Problem 4 - Point Source To Two Targets 11 5 Validation - Ray tracing 13 5.1 Splines 13 5.1.1 Piece-Wise Affine Reflectors 13 5.1.2 Piece-Wise Cubic Reflectors 14 5.2 Error Estimates For Spline Reflectors 14 5.2.1 Lemma: A Priori Feasibility Of Starting Values For Near-Field Problems 15 5.2.2 Estimates for single reflector, near-field targets 16 5.3 Ray Tracing Errors - Illumination Errors 17 5.3.1 Definition: Axioms For Errors 18 5.3.2 Extrapolated Ray Tracing Error (ERTE) 18 5.3.3 Definition: Minimal Distance Ray Tracing Error (MIRTE) 19 5.3.4 Lemma: Continuity Of The Ray Traced Reflection Projection Of Smooth Reflectors 19 5.3.5 Theorem: Convergence Of The MIRTE 20 5.3.6 Convergence Of The ERTE 21 5.3.7 Application 21 6 Numerical Implementation 21 6.1 The DOPTICS Library 21 6.2 Pseudocode Of The Implementation 21 6.2.1 Solutions Of The Problems 22 6.2.2 Ray Tracing And Ray Tracing Error 22 6.3 ERTE Implementation 25 7 Results 26 7.1 Problem 1: Results 26 7.2 Problem 2: Results 26 7.3 Problem 3: Results 27 7.4 Problem 4: Results 27 8 Generalizations In Two Dimensions 29 8.1 Directed Densities 29 8.2 Generalized, Orthogonally Emitting Sources in R2 30 8.2.1 Point Light Sources As Orthogonally Emitting Sources 30 9 Conclusion and Future Research 32 10 Group Dynamic 32 References 32

Page generated in 0.0504 seconds