• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

VERIFICATION OF THE USE OF A CARBON BLOCKING AGENT FOR FLY ASH IN CONCRETE

TAYLOR, AARON THOMAS January 2007 (has links)
No description available.
2

Diffusivity and resistance to deterioration from freezing and thawing of binary and ternary concrete mixture blends

Beck, Lisa Elanna January 1900 (has links)
Master of Science / Department of Civil Engineering / Kyle Riding / Corrosion of reinforcing steel is one of the most common and serious causes of reinforced concrete deterioration. While corrosion is normally inhibited by a passive layer that develops around the reinforcing steel due to the high pH environment of the surrounding concrete, chlorides will break down this protective layer, leading to reinforcement corrosion. Decreasing the diffusivity of the concrete would slow the ingress of chlorides into concrete, and is one of the most economical ways to increase the concrete service life. Optimized concrete mixtures blending portland cement and supplementary cementing materials (SCMs) have become popular throughout the construction industry as a method of improving both fresh and long-term concrete properties such as workability, strength and porosity. It has been shown that use of Class F fly ash, silica fume and ground granulated blast furnace slag (GGBFS) in binary concrete mixture blends can result in a significant reduction in concrete diffusivity. This study investigates the ability of Class C fly ash and ternary concrete mixture blends to also aid in diffusivity reduction. In order to study the effect of incorporation of SCMs into concrete, mixtures containing Class C and Class F fly ash, silica fume and GGBFS were tested following the ASTM C 1556 procedures to measure the concrete’s apparent chloride diffusivity. Structure life cycles were modeled using the measured apparent chloride diffusivities with two finite-difference based life-cycle analysis software packages. To determine whether a correlation between diffusivity and deterioration due to freezing and thawing exists, samples were also tested for their ability to resist deterioration from freezing and thawing cycles using a modified ASTM C 666 Procedure B test. Results show that the use of Class C fly ash yields some service life improvements as compared to the portland cement control mixtures, while ternary mixture blends performed significantly better than the control mixture and equal to or better than the binary SCM mixtures tested. Freeze-thaw tests showed all mixtures to be equally resistant to deterioration due to freezing and thawing.
3

Freeze-thaw performance of prestressed concrete railroad ties

Albahttiti, Mohammed T. January 1900 (has links)
Doctor of Philosophy / Civil Engineering / Kyle Riding / Air voids are purposefully entrained in concrete to provide freeze-thaw durability of prestressed concrete railroad ties. Durability assurance requires consistent provision of an air void system comprised of small, well-distributed bubbles in sufficient quantity for durability and a quality control method for testing tie freeze-thaw durability. Manufacturing processes at three concrete manufacturing plants were investigated in order to determine the effects of process variability on resulting concrete air void system variability. Variation in the concrete air void system and other rheological properties occurred as results of the manufacturing process and vibration. Freezing and thawing durability testing of prestressed concrete ties is currently performed by applying ASTM C666 on 3 x 4 x 11 to 16 in. specimens cut from the shoulders of concrete ties. However, excising these specimens from prestressed concrete could lead to stress changes in the sample and cracking, potentially causing false interpretations of results. Therefore, testing was undertaken to understand the effects of prestressing and sample extraction on freeze-thaw durability measured by ASTM C666. In order to assess the effects of sampling and testing procedures on freeze-thaw quality control testing results of prestressed concrete railroad ties, full ties, half ties, and 3 x 4 x 11 in. excised samples were tested. Freeze-thaw testing included determination of the optimal method to measure freeze-thaw deterioration in large sections, the effects of saw-cutting, and the presence of reinforcement. Results indicated that the Ultrasonic Pulse Velocity accurately represented deterioration in large sections. The presence of reinforcement in excised samples led to faster deterioration compared to cast ASTM C666 samples, while saw-cutting without reinforcement did not significantly affect freeze-thaw durability.

Page generated in 0.0732 seconds