Spelling suggestions: "subject:"bfrequency division multiplexing"" "subject:"bfrequency division multiplexings""
71 |
Issues on broadband wireless communication systems: channel estimation, frequency synchronization and space-time-frequency coding. / CUHK electronic theses & dissertations collectionJanuary 2005 (has links)
"Faster, higher, stronger"---the Olympic motto is being pursued and practised in the design of broadband wireless communication systems. Motivated by the huge demands for fast and reliable communications over wireless channels, broadband communication systems are required to provide faster (low-complexity) data processing, higher data throughput and stronger (lower error rate) performance. In practice, however, broadband communication systems must cope with critical performance-limiting challenges that include time- and frequency-selective fading channels, noise, inter-symbol interference (ISI), intercarrier interference (ICI) as well as power and bandwidth constraints. To address these challenges, this thesis investigates several physical layer aspects of broadband wireless communication systems. / Incorporating OFDM into multiple-input multiple-output (MIMO) system, MIMO-OFDM has been shown to provide larger channel capacity and greater diversity gain. However, current coding schemes for MIMO-OFDM are either space-time coded (STC) OFDM without the guarantee of full diversity gains or space-frequency coding (SFC) with a greater loss of data rate. Furthermore, most existing STC and SFC have focused on quasi-static fading which is not practical for broadband wireless communications. When multi-band OFDM (MB-OFDM) is applied to ultra-wide band (UWB) communications, a high diversity can be obtained, but in the expense of a much lower (close to half) data rate. To address the limitations of existing coding schemes for broadband wireless communication systems, this thesis: (i) proposes a space-time-frequency coding (STFC) that can achieve maximum diversity and maximum symbol rate transmission over MIMO block-fading channels; (ii) derives a high-rate full-diversity SFC from STFC tailored for frequency-selective fading channels; and (iii) proposes a high-rate high-diversity algebraic time-frequency coding (ATFC) for MB-OFDM system. / Orthogonal frequency division multiplexing (OFDM) is an effective technique to eliminate ISI in broadband wireless communications. This thesis studies the problem of training-based OFDM channel estimation and proposes a training method that minimizes the number of pilots employed to achieve a desired bit error rate (BER) performance. A clustered pilot pattern is further proposed to enhance the BER performance. Focusing on OFDM frequency synchronization, this thesis also proposes a clustered pilot tones placement and a novel pilot sequence design for carrier frequency offset (CFO) compensation. The analytical and simulation results show that the root mean square error (RMSE) of the CFO estimate can be greatly reduced. / Zhang Wei. / "July 2005." / Adviser: Pak-Chung Ching. / Source: Dissertation Abstracts International, Volume: 67-01, Section: B, page: 0461. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (p. 126-143). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
|
72 |
Efficient detection and scheduling for MIMO-OFDM systemsLiu, Wei 17 October 2012 (has links)
Multiple-input multiple-output (MIMO) antennas can be exploited to provide high data rate using a limited bandwidth through multiplexing gain. MIMO combined with orthogonal frequency division multiplexing (OFDM) could potentially provide high data rate and high spectral efficiency in frequency-selective fading channels. MIMO-OFDM technology has been widely employed in modern communication systems, such as Wireless Local Area Network (WLAN), Long Term Evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX). However, most of the conventional schemes either are computationally prohibitive or underutilize the full performance gain provided by the inherent merits of MIMO and OFDM techniques.
In the first part of this dissertation, we firstly study the channel matrix inversion which is commonly required in various MIMO detection schemes. An algorithm that exploits second-order extrapolation in the time domain is proposed to efficiently reduce the computational complexity. This algorithm can be applied to both linear detection and non-linear detection such as ordered successive interference cancellation (OSIC) while maintaining the system performance. Secondly, we study the complexity reduction for Lattice Reduction Aided Detection (LRAD) of MIMO-OFDM systems. We propose an algorithm that exploits the inherent feature of unimodular transformation matrix that remains the same for relatively highly correlated frequency components. This algorithm effectively eliminates the redundant brute-force lattice reduction iterations among adjacent subcarriers. Thirdly, we analyze the impact of channel coherence bandwidth on two LRAD algorithms. Analytical and simulation results demonstrate that carefully setting the initial calculation interval according to the coherence bandwidth is essential for both algorithms.
The second part of this dissertation focuses on efficient multi-user (MU) scheduling and coordination for the uplink of WLAN that uses MIMO-OFDM techniques. On one hand, conventional MU-MIMO medium access control (MAC) protocols require large overhead, which lowers the performance gain of concurrent transmissions rendered by the multi-packet reception (MPR) capability of MIMO systems. Therefore, an efficient MU-MIMO uplink MAC scheduling scheme is proposed for future WLAN. On the other hand, single-user (SU) MIMO achieves multiplexing gain in the physical (PHY) layer and MU-MIMO achieves multiplexing gain in the MAC layer. In addition, the average throughput of the system varies depending on the number of antennas and users, average payload sizes, and signal-to-noise-ratios (SNRs). A comparison on the performance between SU-MIMO and MU-MIMO schemes for WLAN uplink is hence conducted. Simulation results indicate that a dynamic switch between the SU-MIMO and MU-MIMO is of significance for higher network throughput of WLAN uplink. / Graduation date: 2013
|
73 |
Performance-improving techniques for wireless systems /Ozdural, Orhan Can. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2007. / Printout. Includes bibliographical references (leaves 82-85). Also available on the World Wide Web.
|
74 |
Robust Beamforming for OFDM Modulated Two-Way MIMO Relay NetworkZhou, Jianwei 2012 May 1900 (has links)
This thesis studies a two-way relay network (TWRN), which consists of two single antenna source nodes and a multi-antenna relay node. The source nodes exchange information via the assistance of the relay node in the middle. The relay scheme in this TWRN is amplify-and-forward (AF) based analog network coding (ANC). A robust beamforming matrix optimization algorithm is presented here with the objective to minimize the transmit power at the relay node under given signal to interference and noise ratio (SINR) requirements of source nodes. This problem is first formulated as a non-convex optimization problem, and it is next relaxed to a semi-definite programming (SDP) problem by utilizing the S-procedure and rank-one relaxation. This robust beamforming optimization algorithm is further validated in a MATLAB-based orthogonal frequency-division multiplexing (OFDM) MIMO two-way relay simulation system. To better investigate the performance of this beamforming algorithm in practical systems, synchronization issues such as standard timing offset (STO) and carrier frequency offset (CFO) are considered in simulation. The transmission channel is modeled as a frequency selective fading channel, and the source nodes utilize training symbols to perform minimum mean-square error (MMSE) channel estimation. BER curves under perfect and imperfect synchronization are presented to show the performance of TWRN with ANC. It is shown that the outage probability of robust beamforming algorithm is tightly related to the SINR requirements at the source nodes, and the outage probability increases significantly when the SINR requirements are high.
|
75 |
Analyzing Selected Mapping for Peak-to-Average Power Reduction in OFDMBaxley, Robert John 20 April 2005 (has links)
Orthogonal frequency division multiplexing (OFDM) has become a popular modulation method in high-speed wireless communications. By partitioning a wideband fading channel into flat narrowband channels, OFDM is able to mitigate the detrimental effects of multipath fading using a simple one-tap equalizer. However, in the time domain OFDM signals suffer from large envelope variations, which are often characterized by the peak-to-average ratio (PAR). High PAR signals, like OFDM, require that transmission amplifiers operate at very low power efficiencies to avoid clipping.
In this thesis we review the most popular OFDM PAR-reduction techniques and demonstrate that selected mapping (SLM) is a particularly promising reduction technique. In a SLM system, an OFDM symbol is mapped to a set of quasi-independent equivalent symbols and then the lowest-PAR symbol is selected for transmission. The tradeoff for PAR reduction in SLM is computational complexity as each mapping requires an additional inverse fast fourier transform (IFFT) operation in the
transmitter.
In additional to an overview of current SLM work, we present a thorough analysis of SLM as well as several novel SLM proposals. First, we derive the closed-form expression for the expected PAR in an SLM system. The expected PAR can be thought of as a metric of PAR reduction capability. Second, we provide a power analysis of SLM to determine if the computational power costs outweigh the power saved through PAR reduction. Through this analysis, we show that SLM is capable of several Watts of net power savings when used in a wireless transmission system. Third, we propose that a PAR threshold should be set in SLM. Such thresholding leads to significant complexity decreases. Fourth, we derive the maximum likelihood (ML) and maximum extit{a posteriori} (MAP) detection metrics for blind SLM (BSLM) and threshold BSLM respectively. Lastly, we demonstrate that by using monomial phase sequences in SLM blind phase sequence detection is possible with a single FFT operation in the receiver.
|
76 |
ICI Self-Cancellation in MISO-OFDM with Distributed AntennaChou, Yi-chuan 25 August 2010 (has links)
In this thesis, we investigate a wireless communications system with distributed transmit antennas. Under such system scenario, the received signal has multiple carrier frequency offsets (CFOs) since each transmitter has its own oscillator, leading to serious inter-carrier interference (ICI) at the receiver end. Therefore, an ICI self-cancellation scheme is proposed in this thesis, where two different relay nodes use different sub-carriers. When the signals from different relay nodes are combined at the destination node, the ICI self-cancellation can be achieved.
In addition, the quality of the received signal can be further improved if the residual CFO can be properly compensated. Traditionally, the medium value of the various CFOs is taken for compensation because of its simplicity. However, a medium value does not result in the optimal performance. In this thesis, a close form expression of optimal CFO is derived to maximize the average signal to interference power ratio. It is shown that the optimal CFO compensation is a function of channel state and individual CFOs.
Simulation experiments are conducted to investigate the performance of the proposed scheme. It is shown that the system bit error rate can be substantially improved when the CFO is less than 0.3 subcarrier spacing.
|
77 |
A PAPR Reduction Scheme Without Side Information in Pilot-Aided OFDM SystemsKuo, Keng-wei 26 August 2010 (has links)
High peak to average power ratio (PAPR) is one of the major drawbacks in
orthogonal frequency division multiplexing (OFDM) systems. In recently years,
various methods have been proposed to reduce the PAPR performance. The
selected mapping (SLM) scheme is perhaps the most popular one because it
provides outstanding PAPR reduction performance. In addition, the subcarrier
magnitude remains the same in the SLM scheme. However, there are two major
shortcomings in the SLM scheme. First of all, it requires a number of inverse fast
Fourier transforms (IFFTs) to produce candidate signals, dramatically
increasing the computational complexity. In addition, side information has to be
transmitted to the receiver to indicate the candidate signal that results in the best
PAPR, leading to the decrease in bandwidth utilization. To overcome these two
drawbacks, this thesis proposes a novel SLM scheme that does not need side
information. The proposed scheme is based on a low complexity SLM scheme
[C.-P. Li, S.-H. Wang, and C.-L. Wang, ¡§Novel low-complexity SLM schemes for
PAPR reduction in OFDM systems,¡¨ IEEE Trans. Signal Process., vol. 58, no. 5,
pp. 2916¡V2921, May 2010] in pilot-aided OFDM system. Simulation experiments
are conducted to verify the performance of the proposed scheme. It is shown that
the bit error rate (BER) performance of the proposed scheme is very similar to
that of the traditional SLM scheme with perfect knowledge of the side
information. Therefore, the proposed scheme not only has the advantages of low
complexity and high bandwidth utilization, but also has a superior BER
performance.
|
78 |
A New Active Constellation Extension Scheme for PAPR Reduction in OFDM SystemsHuang, Bo-Rong 23 August 2011 (has links)
High peak-to-average power ratio (PAPR) is a serious drawback in orthogonal frequency division multiplexing (OFDM) systems. Various methods have been proposed to reduce PAPR, active constellation extension (ACE) scheme has excellent performance. There are two schemes were proposed in traditional ACE, the one of which is ACE-Smart Gradient-Project (SGP) which can significantly reduce PAPR through first iteration. In fact, optimal solution is not obtained in ACE-SGP, we find the scheme can be formulated as convex optimization problem, that is, we can find out optimal solution to minimize PAPR by convex optimization algorithm. Two proposed schemes are based on two low complexity schemes, respectively, and they were proved to satisfy convex optimization problem. Although the power of transmission and complexity of optimization algorithm in the proposed schemes are higher than that of the traditional ACE-SGP scheme, but proposed schemes has proper improvement in PAPR reduction.
|
79 |
Research on Noise Estimation for LTE systemsChou, Huan-Chin 18 October 2011 (has links)
In this thesis, we study the noise power estimation in the LTE system. Two approaches, the weight method and the subspace method, are considered.
The performance of noise power estimation using the weight method highly depends on the accuracy of the channel estimation.
The channel estimation usually gets poor results under scenarios with long delay spreads. Therefore, the weight method also gets poor result.
To overcome the mentioned drawback, we propose the subspace method which is independent from the channel estimation.
From simulation results, we observe that the subspace method gets bias results. However, the bias depends on the length of the observation window and only gets a little influence from the channel conditions.
Therefore, we can correct the bias using a simple look-up-table approach. Computer simulations show that the subspace method gets the more accurate result than the weight method.
|
80 |
A Channel Coding Scheme for Solving Ambiguity in OFDM Systems Using Blind Data DetectorHong, Guo-fong 31 July 2012 (has links)
In orthogonal frequency division multiplexing (OFDM) system, blind estimator was proposed which can obtain high bandwidth efficiently. There is a serious ambiguity problem in blind data detector structure. Solution methods can divide into three cases: pilot signal, superimposed training, and channel coding. In order to achieve totally blind estimate, we use channel coding to solve ambiguity in this thesis. In previous study, it had been use low-density-parity-check code (LDPC) to solve ambiguity, and proposed an encoding method to avoid ambiguity for BPSK. However, we consider generic linear block code (LBC) and want to extend BPSK modulation to higher modulation scheme, including QPSK, 16QAM, and 64QAM. For any constellation follows grey coding, we induct a difference of inner product for ambiguity and derive some sufficient conditions for LBC. If LBC satisfy some conditions, then it could avoid ambiguity between valid code words and it can achieve totally blind estimate. In simulation section, for data estimate, we respectively use two LBC cases, which exist ambiguity or not. In order to be fair, we insert a pilot to solve ambiguity in LBC, which exist ambiguity. In simulation results, the performance of two cases is similar in high signal to noise ratio (SNR). In other words, if we use proper channel code which it satisfy sufficient conditions, then we can increase bandwidth efficiently.
|
Page generated in 0.0784 seconds