• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 4
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyzing Selected Mapping for Peak-to-Average Power Reduction in OFDM

Baxley, Robert John 20 April 2005 (has links)
Orthogonal frequency division multiplexing (OFDM) has become a popular modulation method in high-speed wireless communications. By partitioning a wideband fading channel into flat narrowband channels, OFDM is able to mitigate the detrimental effects of multipath fading using a simple one-tap equalizer. However, in the time domain OFDM signals suffer from large envelope variations, which are often characterized by the peak-to-average ratio (PAR). High PAR signals, like OFDM, require that transmission amplifiers operate at very low power efficiencies to avoid clipping. In this thesis we review the most popular OFDM PAR-reduction techniques and demonstrate that selected mapping (SLM) is a particularly promising reduction technique. In a SLM system, an OFDM symbol is mapped to a set of quasi-independent equivalent symbols and then the lowest-PAR symbol is selected for transmission. The tradeoff for PAR reduction in SLM is computational complexity as each mapping requires an additional inverse fast fourier transform (IFFT) operation in the transmitter. In additional to an overview of current SLM work, we present a thorough analysis of SLM as well as several novel SLM proposals. First, we derive the closed-form expression for the expected PAR in an SLM system. The expected PAR can be thought of as a metric of PAR reduction capability. Second, we provide a power analysis of SLM to determine if the computational power costs outweigh the power saved through PAR reduction. Through this analysis, we show that SLM is capable of several Watts of net power savings when used in a wireless transmission system. Third, we propose that a PAR threshold should be set in SLM. Such thresholding leads to significant complexity decreases. Fourth, we derive the maximum likelihood (ML) and maximum extit{a posteriori} (MAP) detection metrics for blind SLM (BSLM) and threshold BSLM respectively. Lastly, we demonstrate that by using monomial phase sequences in SLM blind phase sequence detection is possible with a single FFT operation in the receiver.
2

A PAPR Reduction Scheme Without Side Information in Pilot-Aided OFDM Systems

Kuo, Keng-wei 26 August 2010 (has links)
High peak to average power ratio (PAPR) is one of the major drawbacks in orthogonal frequency division multiplexing (OFDM) systems. In recently years, various methods have been proposed to reduce the PAPR performance. The selected mapping (SLM) scheme is perhaps the most popular one because it provides outstanding PAPR reduction performance. In addition, the subcarrier magnitude remains the same in the SLM scheme. However, there are two major shortcomings in the SLM scheme. First of all, it requires a number of inverse fast Fourier transforms (IFFTs) to produce candidate signals, dramatically increasing the computational complexity. In addition, side information has to be transmitted to the receiver to indicate the candidate signal that results in the best PAPR, leading to the decrease in bandwidth utilization. To overcome these two drawbacks, this thesis proposes a novel SLM scheme that does not need side information. The proposed scheme is based on a low complexity SLM scheme [C.-P. Li, S.-H. Wang, and C.-L. Wang, ¡§Novel low-complexity SLM schemes for PAPR reduction in OFDM systems,¡¨ IEEE Trans. Signal Process., vol. 58, no. 5, pp. 2916¡V2921, May 2010] in pilot-aided OFDM system. Simulation experiments are conducted to verify the performance of the proposed scheme. It is shown that the bit error rate (BER) performance of the proposed scheme is very similar to that of the traditional SLM scheme with perfect knowledge of the side information. Therefore, the proposed scheme not only has the advantages of low complexity and high bandwidth utilization, but also has a superior BER performance.
3

Novel Low-Complexity SLM Schemes for PAPR Reduction in OFDM Systems

Lee, Kun-Sheng 10 August 2008 (has links)
Selected mapping (SLM) schemes are commonly employed to reduce the peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems. It has been shown that the computational complexity of the traditional SLM scheme can be substantially reduced by adopting conversion vectors obtained by using the inverse fast Fourier transform (IFFT) of the phase rotation vector in place of the conventional IFFT operations [21]. Unfortunately, however, the elements of these phase rotation vectors of the conversion vectors in [21] do not generally have an equal magnitude, and thus a significant degradation in the bit error rate (BER) performance is incurred. This problem can be remedied by utilizing conversion vectors having the form of a perfect sequence. This paper presents three novel classes of perfect sequence, each of which comprises certain base vectors and their cyclic-shifted versions. Three novel low-complexity SLM schemes are then proposed based upon the unique structures of these perfect sequences. It is shown that while the PAPR performances of the proposed schemes are marginally poorer than that of the traditional SLM scheme, the three schemes achieve an identical BER performance and have a substantially lower computational complexity.
4

A suboptimal SLM based on symbol interleaving scheme for PAPR reduction in OFDM systems

Liu, Yung-Fu 31 July 2012 (has links)
Orthogonal frequency division multiplexing (OFDM) system is the standard of next generation mobile communication, one of the major drawbacks of OFDM systems is the peak-to-average power ratio (PAPR). In this paper, we proposed a low complexity Selected mapping (SLM) scheme to reduce PAPR. In [27], Wang proposed a low complexity SLM scheme by utilizing conversion vectors having the form of a perfect sequence to solve the problem that phase rotation vectors of the conversion vectors do not usually have an equal magnitude in frequency domain. This paper proposed a low complexity SLM scheme based on perfect sequence and consider the symbol interleaving to reduce the correlation between signals in time domain. It is shown that the (Complementary Cumulative Distribution Function, CCDF) of our proposed scheme are closer to the traditional SLM scheme than Wang¡¦s in [27] but with additional complexity. And the computational complexity is much lower than traditional SLM.
5

Peak-to-Average Power Reduction Schemes in SFBC MIMO-OFDM Systems without Side Information

Ciou, Ying-Chi 30 July 2012 (has links)
Selected mapping (SLM) is a well-known technique used to reduce the peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems. Although SLM scheme can reduce PAPR efficiently, the side information (SI) must be transmitted to the receiver to indicate the candidate signal that generates the OFDM signal with the lowest PAPR. Robust channel coding schemes are typically adopted to prevent erroneous decoding of SI, leading to the lower bandwidth efficiency. To reduce PAPR efficiently and avoid the bandwidth efficiency loss caused by the transmission of SI, two novel PAPR reduction methods are proposed in SFBC MIMO-OFDM systems with two transmitter antennas that employs the Alamouti coding. The candidate signals are constructed in the frequency-domain and time-domain in the first proposed scheme and the second proposed scheme, respectively. In addition, the orthogonality of the space frequency block code is preserved resulting in the data recovery and the corresponding SI can be easily obtained from the conventional Alamouti detection method for both transmission methods. Simulation results show that the BER performance of a SFBC MIMO-OFDM system with the proposed SI detection algorithm is very close to that of perfect SI detection if the extension factor is larger than 1.3.
6

Low-Complexity PAPR Reduction Schemes for Multi-Carrier Systems

Wang, Sen-Hung 23 August 2010 (has links)
Selected mapping (SLM) schemes are commonly employed to reduce the peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems. It has been shown that the computational complexity of the traditional SLM scheme can be substantially reduced by adopting conversion vectors obtained by using the inverse fast Fourier transform (IFFT) of the phase rotation vectors in place of the conventional IFFT operations. To ensure that the elements of these phase rotation vectors have an equal magnitude, conversion vectors should have the form of a perfect sequence. This study firstly presents three novel classes of perfect sequence, each of which comprises certain base vectors and their cyclically shifted versions. Three novel low-complexity SLM schemes are then proposed based upon the unique structures of these perfect sequences. It is shown that while the PAPR reduction performances of the proposed schemes are marginally poorer than that of the traditional SLM scheme, the three schemes achieve a substantially lower computational complexity. Since the three proposed PAPR reduction schemes cannot be utilized in the orthogonal frequency division multiple access (OFDMA) system. A low-complexity scheme for PAPR reduction in OFDMA uplink systems using either an interleaved or a sub-band sub-carrier assignment strategy is also proposed in the second part of this study. The proposed scheme requires just one IFFT operation. The PAPR reduction performance of the proposed scheme is only marginally poorer than that of the traditional SLM scheme. However, the proposed schemes have significantly lower computational complexities. Besides, multiple-input multiple-output (MIMO) OFDM systems with space-frequency block coding (SFBC) are well-known for their robust performance in time selective fading channels. However, SFBC MIMO-OFDM systems have a high computational complexity since the number of IFFTs required scales in direct proportion to the number of antennas at the transmitter. Furthermore, SFBC MIMO-OFDM systems have a high PAPR. Accordingly, a low-complexity PAPR reduction scheme for SFBC MIMO OFDM systems with the Alamouti encoding scheme is proposed in this study. Extending this scheme obtains two low-complexity transmitter architectures for SFBC MIMO-OFDM systems with a general encoding matrix and an arbitrary number of transmitter antennas. The proposed schemes achieve a significant reduction in computational complexity by fully exploiting the time-domain signal properties of the transmitted signal. In addition, a PAPR reduction scheme is presented based on the proposed transmitter schemes. It is shown that the PAPR reduction performance of the proposed scheme is almost as good as that of the traditional SLM scheme, but is achieved with a substantially lower computational complexity.
7

New signal processing approaches to peak-to-average power ratio reduction in multicarrier systems

Bae, Ki-taek 06 December 2010 (has links)
Multi-carrier systems based on orthogonal frequency division multiplexing (OFDM) are efficient technologies for the implementation of broadband wireless communication systems. OFDM is widely used and has been adopted for current mobile broadband wireless communication systems such as IEEE 802.a/g wireless LANs, WiMAX, 3GPP LTE, and DVB-T/H digital video broadcasting systems. Despite their many advantages, however, OFDM-based systems suffer from potentially high peak-to-average power ratio (PAR). Since communication systems typically include nonlinear devices such as RF power amplifiers (PA) and digital-to-analog converters (DAC), high PAR results in increased symbol error rates and spectral radiation. To mitigate these nonlinear effects and to avoid nonlinear saturation effects of the PA, the operating point of a signal with high peak power must be backed off into the linear region of the PA. This so-called output backoff (OBO) results in a reduced power conversion efficiency which limits the battery life for mobile applications, reduces the coverage range, and increases both the cost of the PA and power consumption in the cellular base station. With the increasing demand for high energy efficiency, low power consumption, and greenhouse gas emission reduction, PAR reduction is a key technique in the design of practical OFDM systems. Motivated by the PAR reduction problem associated with multi-carrier systems, such as OFDM, this research explores the state of the art of PAR reduction techniques and develops new signal processing techniques that can achieve a minimum PAR for given system parameters and that are compatible with the appropriate standards. The following are the three principal contributions of this dissertation research. First, we present and derive the semi-analytical results for the output of asymptotic iterative clipping and filtering. This work provides expressions and analytical techniques for estimating the attenuation factor, error vector magnitude, and bit-error-rate (BER), using a noise enhancement factor that is obtained by simulation. With these semi-analytical results, we obtain a relationship between the BER and the target clipping level for asymptotic iterative clipping and filtering. These results serve as a performance benchmark for designing PAR reduction techniques using iterative clipping and filtering in OFDM systems. Second, we analyze the impact of the selected mapping (SLM) technique on BER performance of OFDM systems in an additive white Gaussian noise channel in the presence of nonlinearity. We first derive a closed-form expression for the envelope power distribution in an OFDM system with SLM. Then, using this derived envelope power distribution, we investigate the BER performance and the total degradation (TD) of OFDM systems with SLM under the existence of nonlinearity. As a result, we obtain the TD-minimizing peak backoff (PBO) and clipping ratio as functions of the number of candidate signals in SLM. Third, we propose an adaptive clipping control algorithm and pilotaided algorithm to address a fundamental issue associated with two lowcomplexity PAR reduction techniques, namely, tone reservation (TR) and active constellation extension (ACE). Specifically, we discovered that the existing low-complexity algorithms have a low clipping ratio problem in that they can not achieve the minimum PAR when the target clipping level is set below the initially unknown optimum value. Using our proposed algorithms, we overcome this problem and demonstrate that additional PAR reduction is obtained for any low value of the initial target clipping ratio. / text

Page generated in 0.0852 seconds