Spelling suggestions: "subject:"bfrequency multiplexing"" "subject:"bfrequency multiplexings""
1 |
Multiplexed optical fibre sensors for civil engineering applicationsChilds, Paul, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW January 2007 (has links)
Fibre-optic sensors have been the focus of a lot of research, but their associated high cost has stifled their transferral from the laboratory to real world applications. This thesis addresses the issue of multiplexing, a technology that would lower the cost per unit sensor of a sensor system dramatically. An overview of the current state of research of, and the principles behind, multiplexed sensor networks is given. A new scheme of multiplexing, designated W*DM, is developed and implemented for a fibre Bragg grating (FBG) optical fibre sensor network. Using harmonic analysis, multiplexing is performed in the domain dual to that of the wavelength domain of a sensor. This scheme for multiplexing is compatible with the most commonly used existing schemes of WDM and TDM and thus offers an expansion over, and a resultant cost decrease from, the sensor systems currently in use. This research covered a theoretical development of the scheme, a proof of principle, simulated and experimental analysis of the performance of the multiplexed system, investigation into sensor design requirements and related issues, fabrication of the sensors according to the requirements of the scheme and the successful multiplexing of eight devices (thus offering an eightfold increase over current network capacities) using this scheme. Extensions of this scheme to other fibre sensors such as Long Period Gratings (LPGs) and blazed gratings were also investigated. Two LPGs having a moir?? structure were successfully multiplexed and it was shown that a blazed Fabry Perot grating could be used as a tuneable dual strain/refractive index sensor. In performing these tests, it was discovered that moir?? LPGs exhibited a unique thermal switching behaviour, hereto unseen. Finally the application of fibre sensors to the civil engineering field was investigated. The skill of embedding optical fibre in concrete was painstakingly developed and the thermal properties of concrete were investigated using these sensors. Field tests for the structural health monitoring of a road bridge made from a novel concrete material were performed. The phenomenon of shrinkage, creep and cracking in concrete was investigated showing the potential for optical fibre sensors to be used as a viable research tool for the civil engineer.
|
2 |
Low Power LO Generation Based On Frequency Multiplication TechniquePandey, Jagadish Narayan 07 1900 (has links)
TO achieve high level of integration in order to reduce cost, heterodyne architecture has made way for low-IF and zero-IF (direct conversion) receiver architectures. However, a very serious issue in implementing both zero and low-IF receiver is of local oscillator (LO) pulling. Another challenge is on-chip generation of high-precision quadrature LO signals for image-rejection. We have addressed both these issues in this thesis. Regarding the first problem, we have developed a lowpower frequency multiplication technique which uses a low frequency ring oscillator and multiplies its frequency in power e cient way to generate the desired frequency. We then use this differential LO signal to generate high-precision quadrature phases by using polyphase filter and an injection-locked quadrature oscillator.
Design examples are presented for 2.4 GHz band of IEEE 802.15.4 standard which is a low-data rate WPAN standard. The standard o ers relaxed performance specifications in order to help achieve low power of operation.
Contributions in the thesis
• The problem of local oscillator (LO) pulling can be addressed by running LO
at a much reduced frequency and use a frequency multiplier (FM) to generate
the desired frequency. Also, use of low-frequency LO saves power in VCO and helps eliminate first few dividers leading to significant power savings. In addition, the entire frequency synthesizer can be run at a lower supply voltage saving additional power.
The frequency multiplier involves combining edges from the lower frequency ring oscillator. It improves upon the prior work by proposing a new lower-power edge-combiner. The overall power is reduced by exploiting the relaxed phase noise specification of IEEE 802.15.4 standard. Simulations using SpectreRF show that the circuit consumes only 550 オW of power in 0.13 オm RF-CMOS technology with 1.2 V supply voltage, and provides 950 VP-P sinusoidal output with phase noise of -85.5 dBc/Hz at 1 MHz offset.
• An injection-locking based quadrature desensitization circuit is designed for
precision quadrature generation. The differential (two phase) output of the
frequency multiplier is fed to a polyphase filter to generate nearly quadrature
signals. Output of polyphase filter is in turn fed to the desensitizer circuit to
obtain high-precision quadrature signals. Designed for 2.4 GHz band in 0.13 µm RF-CMOS technology, it achieves a phase error of 0.5 for 1% mismatch in LC tanks. It achieves a phase noise of -84.3 dBc/Hz at 1 MHz o set and provides quadrature sinusoids of 475 mV amplitude while consuming 1.56 mW of power.
• We have analyzed the popular cross-coupled LC-VCOs to generate quadrature sinusoids. In practical LC-oscillators built using low/moderate quality factor on-chip inductors, the actual frequency of oscillation is a little less than 1/2pvLC .
This is known as Groszkowski effect. On the other hand, in quadrature oscillator
topologies, consisting of two, cross-coupled, negative resistance LC-VCOs using
parallel coupling transistors, an upward shift in frequency of oscillation from the
free-running frequency of each LC-VCO is observed. This is because in order to satisfy the Barkhausen’s criteria, the LC-tanks have to operate at a frequency
away from the frequency of resonance. This e ect called as quadrature detuning effect results in higher phase noise and reduced amplitude.
We have shown that the old treatment given in literature is quite inaccurate for
practical LC oscillators that are built using low/mo derate Q on-chip inductors.
Also the prior work ignores Groszkowski effect which could be significant for low
Q LC tanks. We have provided simple, accurate and closed-form expressions
of associated frequency-shifts and amplitude of oscillation including both the effects. Our results show excellent match with results obtained from SpectreRF and Matlab simulations.
|
3 |
Multiplexed optical fibre sensors for civil engineering applicationsChilds, Paul, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW January 2007 (has links)
Fibre-optic sensors have been the focus of a lot of research, but their associated high cost has stifled their transferral from the laboratory to real world applications. This thesis addresses the issue of multiplexing, a technology that would lower the cost per unit sensor of a sensor system dramatically. An overview of the current state of research of, and the principles behind, multiplexed sensor networks is given. A new scheme of multiplexing, designated W*DM, is developed and implemented for a fibre Bragg grating (FBG) optical fibre sensor network. Using harmonic analysis, multiplexing is performed in the domain dual to that of the wavelength domain of a sensor. This scheme for multiplexing is compatible with the most commonly used existing schemes of WDM and TDM and thus offers an expansion over, and a resultant cost decrease from, the sensor systems currently in use. This research covered a theoretical development of the scheme, a proof of principle, simulated and experimental analysis of the performance of the multiplexed system, investigation into sensor design requirements and related issues, fabrication of the sensors according to the requirements of the scheme and the successful multiplexing of eight devices (thus offering an eightfold increase over current network capacities) using this scheme. Extensions of this scheme to other fibre sensors such as Long Period Gratings (LPGs) and blazed gratings were also investigated. Two LPGs having a moir?? structure were successfully multiplexed and it was shown that a blazed Fabry Perot grating could be used as a tuneable dual strain/refractive index sensor. In performing these tests, it was discovered that moir?? LPGs exhibited a unique thermal switching behaviour, hereto unseen. Finally the application of fibre sensors to the civil engineering field was investigated. The skill of embedding optical fibre in concrete was painstakingly developed and the thermal properties of concrete were investigated using these sensors. Field tests for the structural health monitoring of a road bridge made from a novel concrete material were performed. The phenomenon of shrinkage, creep and cracking in concrete was investigated showing the potential for optical fibre sensors to be used as a viable research tool for the civil engineer.
|
Page generated in 0.0486 seconds