• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Frequency selective surfaces for Terahertz applications

Sanz Fernandez, Juan Jose January 2012 (has links)
This thesis presents both theoretical and experimental investigations of the performance and capabilities of frequency selective surfaces (FSS) applied at THz frequencies. The aim is to explore and extend the use of FSS, traditionally limited to microwave frequencies, towards the THz regime of the spectrum, where interesting applications such as imaging, sensing and communications exist. The contribution of this work lies in three main areas within the scope of THz FSS, namely, performance, prototyping and applications. Unlike microwave FSS where extensive research has been performed to evaluate the performance of different FSS designs, particular problems arise at THz frequencies, significantly, the ohmic losses. While a few notable studies can be found on the issue of ohmic losses, part of this thesis investigates, for the first time, the power dissipation due to the presence of both ohmic and dielectric losses, in relation to the power stored in the vicinity of the FSS, the currents induced in the elements of the array and the array’s terminal impedance. By doing so, a better understanding of the performance of THz FSS has been given in terms of their quality factor, allowing for design guidelines previously unavailable. In order to demonstrate multiband operation experimentally, a novel fabrication process has been designed and developed to manufacture capacitive or dipole-based THz FSS on a dielectric layer. Dry deep-reactive ion etching has been employed in order to avoid the use of wet etching to provide better control of etch characteristics. Various FSS operating around 15THz have been demonstrated experimentally. In addition, THz FSS have been investigated theoretically in the realm of three different applications, namely, multiband operation, sensing capability and reconfigurability. Multiband characteristics using single-screen FSS have been achieved by perturbed dipole FSS exhibiting up to four resonances due to the excitation of even and odd current modes. After studying the near-fields in perturbed FSS, it has been found that this type of FSS represent a very attractive candidate for sensing applications due to the revealed near-field enhancement phenomena related to the excitation of the odd mode, where currents flow in opposite directions. Finally, a novel tunability approach to reach frequency reconfigurability by varying the near-field coupling between two closely spaced layers in a dual-layer configuration has been proposed. A MEMS movable four-arm membrane has been suggested to vary the distance between the two layers mechanically, leading to the frequency tuning effect. This approach has been shown to be particularly suitable for THz frequencies, and has been applied to demonstrate theoretically tunable FSS and other periodic structures, such as artificial magnetic conductors and dielectric gratings.
2

Modélisation électromagnétique des Surfaces Sélectives en Fréquence finies uniformes et non-uniformes par la Technique de Changement d'Echelle (SCT) / Electromagnetic modeling of finite uniform and non-uniform frequency selective surfaces using Scale Changing Technique (SCT)

Tchikaya, Euloge Budet 22 October 2010 (has links)
Les structures planaires de tailles finies sont de plus en plus utilisées dans les applications des satellites et des radars. Deux grands types de ces structures sont les plus utilisés dans le domaine de la conception RF à savoir Les Surfaces Sélectives en Fréquence (FSS) et les Reflectarrays. Les FSSs sont un élément clé dans la conception de systèmes multifréquences. Elles sont utilisées comme filtre en fréquence, et trouvent des applications telles que les radômes, les réflecteurs pour antenne Cassegrain, etc. Les performances des FSSs sont généralement évaluées en faisant l'hypothèse d'une FSS de dimension infinie et périodique en utilisant les modes de Floquet, le temps de calcul étant alors réduit quasiment à celui de la cellule élémentaire. Plusieurs méthodes permettant la prise en compte de la taille finie des FSSs ont été développées. La méthode de Galerkin basée sur l'approche rigoureuse permet la prise en compte des interactions entre les différents éléments du réseau, mais cette technique ne fonctionne que pour les FSSs de petite taille, typiquement 3x3 éléments. Pour les grands réseaux, cette méthode n'est plus adaptée, car le temps de calcul et l'exigence en mémoire deviennent trop grands. Donc, une autre approche est utilisée, celle basée sur la décomposition spectrale en onde plane. Elle permet de considérer un réseau fini comme un réseau périodique infini, illuminé partiellement par une onde plane. Avec cette approche, des FSSs de grande taille sont simulées, mais elle ne permet pas dans la plupart des cas, de prendre en compte les couplages qui existent entre les différentes cellules du réseau, les effets de bord non plus. La simulation des FSSs par les méthodes numériques classiques basées sur une discrétisation spatiale (méthode des éléments finis, méthode des différences finies, méthode des moments) ou spectrale (méthodes modales) aboutit souvent à des matrices mal conditionnées, des problèmes de convergence numérique et/ou des temps de calcul excessifs. Pour éviter tous ces problèmes, une technique appelée technique par changements d'échelle tente de résoudre ces problèmes. Elle est basée sur le partitionnement de la géométrie du réseau en plusieurs sous-domaines imbriqués, définis à différents niveaux d'échelle du réseau. Le multi-pôle de changement d'échelle, appelé Scale-Changing Networks (SCN), modélise le couplage électromagnétique entre deux échelles successives. La cascade de ces multi-pôles de changement d'échelle, permet le calcul de la matrice d'impédance de surface de la structure complète et donc la modélisation globale du réseau. Ceci conduit à une réduction significative en termes de temps de calcul et d'espace mémoire par rapport aux méthodes numériques classiques. Comme le calcul des multi-pôles de changement d'échelle est mutuellement indépendant, les temps d'exécution peuvent encore être réduits de manière significative en parallélisant le calcul. La SCT permet donc de modéliser des FSSs Finies tout en prenant en compte le couplage entre les éléments adjacents du réseau. / The finite size planar structures are increasingly used in applications of satellite and radar. Two major types of these structures are the most used in the field of RF design ie Frequency Selective Surfaces (FSS) and the Reflectarrays. The FSSs are a key element in the design of multifrequency systems. They are used as frequency filter, and find applications such as radomes, reflector Cassegrain antenna, etc.. The performances of FSSs are generally evaluated by assuming an infinite dimensional FSS using periodic Floquet modes, the computation time is then reduced almost to that of the elementary cell. Several methods have been developed for taking into account the finite dimensions of arrays. For example the Galerkin method uses a rigorous element by element approach. With this method, the exact interactions between the elements are taken into account but this technique works only for small FSS, typically 3x3 elements. For larger surfaces, this method is no more adapted. The computation time and the memory requirement become too large. So another approach is used based on plane wave spectral decomposition. It allows considering the finite problem as a periodic infinite one locally illuminated. With this approach, large FSS are indeed simulated, but the exact interactions between the elements are not taken into account, the edge effects either. The simulation of FSS by conventional numerical methods based on spatial meshing (finite element method, finite difference, method of moments) or spectral (modal methods) often leads in the practice to poorly conditioned matrices, numerical convergence problems or/and excessive computation time. To avoid these problems, a new technique called Scale Changing Technique attempts to solve these problems. The SCT is based on the partition of discontinuity planes in multiple planar sub-domains of various scale levels. In each sub- omain the higher-order modes are used for the accurate representation of the electromagnetic field local variations while low-order modes are used for coupling the various scale levels. The electromagnetic coupling between scales is modelled by a Scale Changing Network (SCN). As the calculation of SCN is mutually independent, the execution time can still be significantly reduced by parallelizing the computation. With the SCT, we can simulate large finite FSS, taking into account the exact interactions between elements, while addressing the problem of excessive computation time and memory
3

An?lise e s?ntese de antenas e superf?cies seletivas de frequ?ncia utilizando computa??o evolucion?ria e intelig?ncia de enxames

Lins, Hertz Wilton de Castro 11 October 2012 (has links)
Made available in DSpace on 2014-12-17T14:55:06Z (GMT). No. of bitstreams: 1 HertzWCL_TESE.pdf: 4465162 bytes, checksum: b8574ba7e4819cb59386ad0ba99ebd86 (MD5) Previous issue date: 2012-10-11 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / The frequency selective surfaces, or FSS (Frequency Selective Surfaces), are structures consisting of periodic arrays of conductive elements, called patches, which are usually very thin and they are printed on dielectric layers, or by openings perforated on very thin metallic surfaces, for applications in bands of microwave and millimeter waves. These structures are often used in aircraft, missiles, satellites, radomes, antennae reflector, high gain antennas and microwave ovens, for example. The use of these structures has as main objective filter frequency bands that can be broadcast or rejection, depending on the specificity of the required application. In turn, the modern communication systems such as GSM (Global System for Mobile Communications), RFID (Radio Frequency Identification), Bluetooth, Wi-Fi and WiMAX, whose services are highly demanded by society, have required the development of antennas having, as its main features, and low cost profile, and reduced dimensions and weight. In this context, the microstrip antenna is presented as an excellent choice for communications systems today, because (in addition to meeting the requirements mentioned intrinsically) planar structures are easy to manufacture and integration with other components in microwave circuits. Consequently, the analysis and synthesis of these devices mainly, due to the high possibility of shapes, size and frequency of its elements has been carried out by full-wave models, such as the finite element method, the method of moments and finite difference time domain. However, these methods require an accurate despite great computational effort. In this context, computational intelligence (CI) has been used successfully in the design and optimization of microwave planar structures, as an auxiliary tool and very appropriate, given the complexity of the geometry of the antennas and the FSS considered. The computational intelligence is inspired by natural phenomena such as learning, perception and decision, using techniques such as artificial neural networks, fuzzy logic, fractal geometry and evolutionary computation. This work makes a study of application of computational intelligence using meta-heuristics such as genetic algorithms and swarm intelligence optimization of antennas and frequency selective surfaces. Genetic algorithms are computational search methods based on the theory of natural selection proposed by Darwin and genetics used to solve complex problems, eg, problems where the search space grows with the size of the problem. The particle swarm optimization characteristics including the use of intelligence collectively being applied to optimization problems in many areas of research. The main objective of this work is the use of computational intelligence, the analysis and synthesis of antennas and FSS. We considered the structures of a microstrip planar monopole, ring type, and a cross-dipole FSS. We developed algorithms and optimization results obtained for optimized geometries of antennas and FSS considered. To validate results were designed, constructed and measured several prototypes. The measured results showed excellent agreement with the simulated. Moreover, the results obtained in this study were compared to those simulated using a commercial software has been also observed an excellent agreement. Specifically, the efficiency of techniques used were CI evidenced by simulated and measured, aiming at optimizing the bandwidth of an antenna for wideband operation or UWB (Ultra Wideband), using a genetic algorithm and optimizing the bandwidth, by specifying the length of the air gap between two frequency selective surfaces, using an optimization algorithm particle swarm / As superf?cies seletivas de freq??ncia, ou FSS (Frequency Selective Surfaces), s?o estruturas constitu?das por arranjos peri?dicos de elementos condutores, denominados patches, geralmente muito finos e impressos sobre camadas diel?tricas, ou de aberturas, perfuradas em superf?cies met?licas muito finas, para aplica??es nas faixas de microondas e ondas milim?tricas. Estas estruturas s?o frequentemente utilizadas em aeronaves, m?sseis, sat?lites, radomes, antenas de refletor, antenas de alto ganho e fornos de microondas, por exemplo. A utiliza??o destas estruturas tem como objetivo principal filtrar bandas de freq??ncia, que podem ser de transmiss?o ou de rejei??o, dependendo da especificidade da aplica??o desejada. Por sua vez, os sistemas de comunica??o modernos, tais como GSM (Global System for Mobile Communications), RFID (Radio Frequency Identification), Bluetooth, Wi-Fi e WiMAX, cujos servi?os s?o altamente demandados pela sociedade, t?m requerido o desenvolvimento de antenas que apresentem, como caracter?sticas principais, baixo custo e perfil, al?m de peso e dimens?es reduzidas. Neste contexto, a antena de microfita se apresenta como uma excelente op??o para os sistemas de comunica??es atuais, pois (al?m de atenderem intrinsicamente aos requisitos mencionados) s?o estruturas planares de f?cil fabrica??o e integra??o com outros componentes de circuitos de microondas. Em consequ?ncia, a an?lise e principalmente a s?ntese destes dispositivos, em face da grande possibilidade de formas, dimens?es e periodicidade de seus elementos, tem sido efetuada atrav?s de modelos de onda completa, tais como o m?todo dos elementos finitos, o m?todo dos momentos e o m?todo das diferen?as finitas no dom?nio do tempo. Entretanto, estes m?todos apesar de precisos requerem um grande esfor?o computacional. Neste contexto, a intelig?ncia computacional (IC) tem sido utilizada com sucesso nos projetos e na otimiza??o de estruturas planares de microondas, como uma ferramenta auxiliar e muito adequada, dada a complexidade das geometrias das antenas e das FSS consideradas. A intelig?ncia computacional ? inspirada em fen?menos naturais como: aprendizado, percep??o e decis?o, utilizando t?cnicas como redes neurais artificiais, l?gica fuzzy, geometria fractal e computa??o evolucion?ria. Este trabalho realiza um estudo de aplica??o de intelig?ncia computacional utilizando metaheur?sticas como algoritmos gen?ticos e intelig?ncia de enxames na otimiza??o de antenas e superf?cies seletivas de frequ?ncia. Os algoritmos gen?ticos s?o m?todos computacionais de busca baseados na teoria da sele??o natural proposta por Darwin e na gen?tica utilizados para resolver problemas complexos como, por exemplo, problemas em que o espa?o de busca cresce com as dimens?es do problema. A otimiza??o por enxame de part?culas tem como caracter?sticas a utiliza??o da intelig?ncia de forma coletiva sendo aplicada em problemas de otimiza??o em diversas ?reas de pesquisa. O objetivo principal deste trabalho consiste na utiliza??o da intelig?ncia computacional, na an?lise e s?ntese de antenas e de FSS. Foram consideradas as estruturas de um monopolo planar de microfita, do tipo anel, e de uma FSS de dipolos em cruz. Foram desenvolvidos os algoritmos de otimiza??o e obtidos resultados para as geometrias otimizadas de antenas e FSS consideradas. Para a valida??o de resultados foram projetados, constru?dos e medidos v?rios prot?tipos. Os resultados medidos apresentaram excelente concord?ncia com os simulados. Al?m disso, os resultados obtidos neste trabalho foram comparados com os simulados atrav?s de um software comercial, tendo sido observada tamb?m uma excelente concord?ncia. Especificamente, a efici?ncia das t?cnicas de IC utilizadas foram comprovadas atrav?s de resultados simulados e medidos, objetivando a otimiza??o da largura de banda de uma antena para opera??o em banda ultralarga, ou UWB (Ultra Wideband), com a utiliza??o de um algoritmo gen?tico e da otimiza??o da largura de banda, atrav?s da especifica??o do comprimento do gap de ar entre duas superf?cies seletivas de frequ?ncia, utilizando um algoritmo de otimiza??o por enxame de part?culas
4

An?lise e projeto de superf?cies seletivas de frequ?ncia com elementos pr?-fractais para aplica??es em comunica??es indoor

N?brega, Clarissa de Lucena 09 April 2013 (has links)
Made available in DSpace on 2014-12-17T14:55:11Z (GMT). No. of bitstreams: 1 ClarissaLN_TESE.pdf: 4153617 bytes, checksum: 6a9b7ed40b1f66da758afee4efaf74e9 (MD5) Previous issue date: 2013-04-09 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / In this thesis, a frequency selective surface (FSS) consists of a two-dimensional periodic structure mounted on a dielectric substrate, which is capable of selecting signals in one or more frequency bands of interest. In search of better performance, more compact dimensions, low cost manufacturing, among other characteristics, these periodic structures have been continually optimized over time. Due to its spectral characteristics, which are similar to band-stop or band-pass filters, the FSSs have been studied and used in several applications for more than four decades. The design of an FSS with a periodic structure composed by pre-fractal elements facilitates the tuning of these spatial filters and the adjustment of its electromagnetic parameters, enabling a compact design which generally has a stable frequency response and superior performance relative to its euclidean counterpart. The unique properties of geometric fractals have shown to be useful, mainly in the production of antennas and frequency selective surfaces, enabling innovative solutions and commercial applications in microwave range. In recent applications, the FSSs modify the indoor propagation environments (emerging concept called wireless building ). In this context, the use of pre-fractal elements has also shown promising results, allowing a more effective filtering of more than one frequency band with a single-layer structure. This thesis approaches the design of FSSs using pre-fractal elements based on Vicsek, Peano and teragons geometries, which act as band-stop spatial filters. The transmission properties of the periodic surfaces are analyzed to design compact and efficient devices with stable frequency responses, applicable to microwave frequency range and suitable for use in indoor communications. The results are discussed in terms of the electromagnetic effect resulting from the variation of parameters such as: fractal iteration number (or fractal level), scale factor, fractal dimension and periodicity of FSS, according the pre-fractal element applied on the surface. The analysis of the fractal dimension s influence on the resonant properties of a FSS is a new contribution in relation to researches about microwave devices that use fractal geometry. Due to its own characteristics and the geometric shape of the Peano pre-fractal elements, the reconfiguration possibility of these structures is also investigated and discussed. This thesis also approaches, the construction of efficient selective filters with new configurations of teragons pre-fractal patches, proposed to control the WLAN coverage in indoor environments by rejecting the signals in the bands of 2.4~2.5 GHz (IEEE 802.11 b) and 5.0~6.0 GHz (IEEE 802.11a). The FSSs are initially analyzed through simulations performed by commercial software s: Ansoft DesignerTM and HFSSTM. The fractal design methodology is validated by experimental characterization of the built prototypes, using alternatively, different measurement setups, with commercial horn antennas and microstrip monopoles fabricated for low cost measurements / Nesta tese, uma superf?cie seletiva de frequ?ncia (FSS) consiste de uma estrutura peri?dica bidimensional montada sobre um substrato diel?trico, que ? capaz de selecionar sinais em uma ou mais faixas de frequ?ncias de interesse. Em busca da obten??o de um melhor desempenho, dimens?es mais compactas, baixo custo de fabrica??o, entre outras caracter?sticas, estas estruturas peri?dicas t?m sido continuamente otimizadas ao longo do tempo. Devido ?s suas caracter?sticas espectrais, que s?o similares as de filtros rejeita-faixa ou passa-faixa, as FSSs t?m sido estudadas e usadas em aplica??es diversas por mais de quatro d?cadas. O projeto de uma FSS com uma estrutura peri?dica composta de elementos pr?fractais facilita a sintonia destes filtros espaciais e o ajuste de seus par?metros eletromagn?ticos, possibilitando uma constru??o compacta, que, em geral, apresenta uma resposta est?vel em frequ?ncia e desempenho superior em rela??o ? sua contrapartida euclidiana. As propriedades ?nicas dos fractais geom?tricos t?m-se mostrado bastante ?teis, principalmente para a constru??o de antenas e superf?cies seletivas de frequ?ncia, permitindo solu??es inovadoras e aplica??es comerciais na faixa de micro-ondas. Em aplica??es mais recentes, as FSSs modificam os ambientes de propaga??o indoor (conceito emergente chamado de wireless building ). Neste contexto, o uso de elementos pr?-fractais tamb?m tem apresentado resultados promissores, tornando mais efetiva a filtragem de mais de uma faixa de frequ?ncias com uma estrutura de camada simples. Esta tese aborda o projeto de FSSs com elementos pr?-fractais baseados nas geometrias de Vicsek, Peano e dos ter?gonos, que funcionam como filtros espaciais do tipo rejeita-faixa. As propriedades de transmiss?o das superf?cies peri?dicas s?o analisadas para a concep??o de dispositivos eficientes, compactos e com respostas est?veis em frequ?ncia, aplic?veis na faixa de micro-ondas e adequados para utiliza??es em comunica??es indoor. Os resultados s?o discutidos em termos do efeito eletromagn?tico decorrente da varia??o de par?metros como, n?mero de itera??es fractais (ou n?vel do fractal), fator de escala, dimens?o fractal e periodicidade da FSS, de acordo com o elemento pr?-fractal utilizado. A an?lise da influ?ncia da dimens?o fractal sobre as propriedades de resson?ncia de uma FSS ? uma contribui??o nova no que diz respeito ?s pesquisas com dispositivos de micro-ondas que utilizam geometrias fractais. Devido ?s caracter?sticas pr?prias e a forma geom?trica dos elementos pr?-fractais de Peano, a possibilidade de reconfigura??o destas estruturas tamb?m ? investigada e discutida. Esta tese aborda ainda, a constru??o de filtros seletivos eficientes com novas configura??es de patches pr?-fractais do tipo ter?gonos, propostos para controle de cobertura WLAN em ambientes indoor, rejeitando os sinais nas faixas de 2,4~2,5 GHz (IEEE 802.11b) e 5,0~6,0 GHz (IEEE 802.11a). As FSSs s?o analisadas inicialmente por meio de simula??es executadas pelos programas comerciais Ansoft DesignerTM e HFSSTM. A metodologia de projeto ? validada atrav?s da caracteriza??o experimental dos prot?tipos constru?dos utilizando, alternativamente, diferentes setups de medi??o, com antenas corneta comerciais e monopolos de microfita de fabrica??o pr?pria para medi??es de baixo custo
5

Otimiza??o de superf?cies seletivas de frequ?ncia com elementos pr?-fractais utilizando rede neural MLP e algoritmos de busca populacional

Silva, Marcelo Ribeiro da 27 January 2014 (has links)
Made available in DSpace on 2014-12-17T14:55:18Z (GMT). No. of bitstreams: 1 MarceloRS_TESE.pdf: 2113878 bytes, checksum: 1cc62a66f14cc48f2e97f986a4dbbb8d (MD5) Previous issue date: 2014-01-27 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / This thesis describes design methodologies for frequency selective surfaces (FSSs) composed of periodic arrays of pre-fractals metallic patches on single-layer dielectrics (FR4, RT/duroid). Shapes presented by Sierpinski island and T fractal geometries are exploited to the simple design of efficient band-stop spatial filters with applications in the range of microwaves. Initial results are discussed in terms of the electromagnetic effect resulting from the variation of parameters such as, fractal iteration number (or fractal level), fractal iteration factor, and periodicity of FSS, depending on the used pre-fractal element (Sierpinski island or T fractal). The transmission properties of these proposed periodic arrays are investigated through simulations performed by Ansoft DesignerTM and Ansoft HFSSTM commercial softwares that run full-wave methods. To validate the employed methodology, FSS prototypes are selected for fabrication and measurement. The obtained results point to interesting features for FSS spatial filters: compactness, with high values of frequency compression factor; as well as stable frequency responses at oblique incidence of plane waves. This thesis also approaches, as it main focus, the application of an alternative electromagnetic (EM) optimization technique for analysis and synthesis of FSSs with fractal motifs. In application examples of this technique, Vicsek and Sierpinski pre-fractal elements are used in the optimal design of FSS structures. Based on computational intelligence tools, the proposed technique overcomes the high computational cost associated to the full-wave parametric analyzes. To this end, fast and accurate multilayer perceptron (MLP) neural network models are developed using different parameters as design input variables. These neural network models aim to calculate the cost function in the iterations of population-based search algorithms. Continuous genetic algorithm (GA), particle swarm optimization (PSO), and bees algorithm (BA) are used for FSSs optimization with specific resonant frequency and bandwidth. The performance of these algorithms is compared in terms of computational cost and numerical convergence. Consistent results can be verified by the excellent agreement obtained between simulations and measurements related to FSS prototypes built with a given fractal iteration / Esta tese descreve metodologias de projeto para superf?cies seletivas de frequ?ncia (FSSs) compostas por arranjos peri?dicos de patches met?licos pr?-fractais impressos em camadas diel?tricas simples (FR4, RT/duroid). As formas apresentadas pelas geometrias correspondentes ? ilha de Sierpinski e ao fractal T s?o exploradas para o projeto simples de filtros espaciais rejeita-faixa eficientes com aplica??es na faixa de micro-ondas. Resultados iniciais s?o discutidos em termos do efeito eletromagn?tico decorrente da varia??o de par?metros como, n?mero de itera??es fractais (ou n?vel do fractal), fator de itera??o fractal, e periodicidade da FSS, dependendo do elemento pr?-fractal utilizado (ilha de Sierpinski ou fractal T). As propriedades de transmiss?o destes arranjos peri?dicos propostos s?o investigadas atrav?s de simula??es realizadas pelos programas comerciais Ansoft DesignerTM e Ansoft HFSSTM, que executam m?todos de onda completa. Para validar a metodologia empregada, prot?tipos de FSS s?o selecionados para fabrica??o e medi??o. Os resultados obtidos apontam caracter?sticas interessantes para filtros espaciais de FSS, tais como: estrutura compacta, com maiores fatores de compress?o de frequ?ncia; al?m de respostas est?veis em frequ?ncia com rela??o ? incid?ncia obl?qua de ondas planas. Esta tese aborda ainda, como enfoque principal, a aplica??o de uma t?cnica alternativa de otimiza??o eletromagn?tica (EM) para an?lise e s?ntese de FSSs com motivos fractais. Em exemplos de aplica??o desta t?cnica, elementos pr?-fractais de Vicsek e Sierpinski s?o usados no projeto ?timo das estruturas de FSS. Baseada em ferramentas de intelig?ncia computacional, a t?cnica proposta supera o alto custo computacional proveniente das an?lises param?tricas de onda completa. Para este fim, s?o desenvolvidos modelos r?pidos e precisos de rede neural do tipo perceptron de m?ltiplas camadas (MLP) utilizando diferentes par?metros como vari?veis de entrada do projeto. Estes modelos de rede neural t?m como objetivo calcular a fun??o custo nas itera??es dos algoritmos de busca populacional. O algoritmo gen?tico cont?nuo (GA), a otimiza??o por enxame de part?culas (PSO), e o algoritmo das abelhas (BA), s?o usados para a otimiza??o das FSSs com valores espec?ficos de frequ?ncia de resson?ncia e largura de banda. O desempenho destes algoritmos ? comparado em termos do custo computacional e da 13 converg?ncia num?rica. Resultados consistentes podem ser verificados atrav?s da excelente concord?ncia obtida entre simula??es e medi??es referentes aos prot?tipos de FSS constru?dos com uma dada itera??o fractal
6

Caracteriza??o de circuitos planares de micro-ondas pelo m?todo iterativo das ondas

Silva Neto, Valdemir Praxedes da 26 July 2013 (has links)
Made available in DSpace on 2014-12-17T14:56:15Z (GMT). No. of bitstreams: 1 ValdemirPSN_DISSERT.pdf: 1834625 bytes, checksum: 95e248e92979a128a6b21a87f73fdd48 (MD5) Previous issue date: 2013-07-26 / The planar circuits are structures that increasingly attracting the attention of researchers, due the good performance and capacity to integrate with other devices, in the prototyping of systems for transmitting and receiving signals in the microwave range. In this context, the study and development of new techniques for analysis of these devices have significantly contributed in the design of structures with excellent performance and high reliability. In this work, the full-wave method based on the concept of electromagnetic waves and the principle of reflection and transmission of waves at an interface, Wave Concept Iterative Procedure (WCIP), or iterative method of waves is described as a tool with high precision study microwave planar circuits. The proposed method is applied to the characterization of planar filters, microstrip antennas and frequency selective surfaces. Prototype devices were built and the experimental results confirmed the proposed mathematical model. The results were also compared with simulated results by Ansoft HFSS, observing a good agreement between them. / Os circuitos planares s?o estruturas que atraem cada vez mais a aten??o dos pesquisadores, pelo bom desempenho e pela capacidade de integra??o com outros dispositivos, na prototipagem de sistemas de transmiss?o e recep??o de sinais na faixa de micro-ondas. Neste contexto, o estudo e o desenvolvimento de novas t?cnicas de an?lise desses dispositivos t?m contribu?do de forma significativa na concep??o de estruturas com desempenhos excelentes e alto grau de confiabilidade. Neste trabalho, o m?todo de onda completa baseado no conceito de ondas eletromagn?ticas e no princ?pio da reflex?o e transmiss?o de ondas em uma interface, Wave Concept Iterative Procedure (WCIP), ou m?todo iterativo das ondas ? descrito como uma ferramenta com alto grau de precis?o no estudo de circuitos planares de micro-ondas. O m?todo proposto ? aplicado na caracteriza??o de filtros planares, antenas de microfita e superf?cies seletivas de frequ?ncia. Prot?tipos dos dispositivos foram constru?dos e os resultados experimentais comprovaram o modelo matem?tico proposto. Os resultados obtidos tamb?m foram comparados com os resultados simulados pelo Ansoft HFSS, tendo sido observada uma boa concord?ncia entre eles
7

Desenvolvimento de circuitos planares sobre substratos t?xteis

Cavalcante, Gustavo Ara?jo 28 April 2014 (has links)
Made available in DSpace on 2014-12-17T14:55:19Z (GMT). No. of bitstreams: 1 GustavoAC_TESE.pdf: 3178455 bytes, checksum: bdea1ce583a318f3a35fb4f3221877a8 (MD5) Previous issue date: 2014-04-28 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / The use of flexible materials for the development of planar circuits is one of the most desired and studied characteristics, lately, by researchers. This happens because the flexibility of the substrate can provide previously impracticable applications, due to the rigidity of the substrates normally used that makes it difficult to fit into the circuits in irregular surfaces. The constant interest in recent years for more lighter devices, increasingly more compacts, flexible and with low cost, led to a new line of research of great interest from both academic and technological views, that is the study and development of textile substrates that can be applied in the development of planar circuits, for applications in the areas of security, biomedical and telecommunications. This paper proposes the development of planar circuits, such as antennas , frequency selective surfaces (FSS) and planar filters, using textile (cotton ticking, jeans and brim santista) as the dielectric substrate and the Pure Copper Polyester Taffeta Fabric, a textile of pure copper, highly conductive, lightweight and flexible, commercially sold as a conductive material. The electrical characteristics of textiles (electric permittivity and loss tangent) were characterized using the transmission line method (rectangular waveguide) and compared with those found in the literature. The structures were analyzed using commercial software Ansoft Designer and Ansoft HFSS, both from the company Ansys and for comparison we used the Iterative Method of Waves (WCIP). For the purpose of validation were built and measured several prototypes of antennas, planar filters and FSS, being possible to confirm an excellent agreement between simulated and measured results / A utiliza??o de materiais flex?veis para o desenvolvimento de circuitos planares ? uma das caracter?sticas mais desejadas e estudadas, ultimamente, pelos pesquisadores, pois essa maleabilidade do substrato proporciona aplica??es antes imposs?veis, devido ? rigidez dos substratos normalmente utilizados o que dificultava a adequa??o dos circuitos em superf?cies irregulares. O constante interesse nos ?ltimos anos por dispositivos mais leves, cada vez mais compactos, flex?veis e com custo reduzido, levou a uma nova linha de pesquisa de grande interesse tanto do ponto de vista acad?mico quanto tecnol?gico que ? o estudo e desenvolvimento de substratos t?xteis que possam ser aplicados no desenvolvimento de circuitos planares, para aplica??es nas ?reas de seguran?a, biom?dica e telecomunica??es. Este trabalho prop?e o desenvolvimento de circuitos planares, tais como antenas, superf?cies seletivas de frequ?ncia (FSS) e filtros planares, utilizando tecidos (lona, jeans e brim santista) como substrato diel?trico e o tecido Pure Copper Polyester Taffeta Fabric, um tecido de cobre puro, altamente condutivo, leve e flex?vel, comercialmente vendido como material condutivo. As caracter?sticas el?tricas dos tecidos (permissividade el?trica e tangente de perda) foram determinadas utilizando o m?todo de linha de transmiss?o e comparadas com os encontrados na literatura. As estruturas foram analisadas utilizando os softwares comerciais Ansoft Designer, Ansoft HFSS ambos da empresa Ansys e para efeito de compara??o foi utilizado o M?todo Iterativo das Ondas (WCIP). Para efeito de valida??o foram constru?dos e medidos v?rios prot?tipos de antenas, FSS e filtros planares sendo poss?vel constatar uma excelente concord?ncia entre os resultados simulados e medidos

Page generated in 0.7511 seconds