Spelling suggestions: "subject:"freshwater mussel"" "subject:"reshwater mussel""
71 |
An Ecotoxicological Recovery Assessment of the Clinch River Following Coal Industry-related Disturbances in Carbo, Virginia (USA): 1967-2002Hull, Matthew S. 06 January 2003 (has links)
American Electric Power's (AEP) coal-fired Clinch River Plant, a power-generating facility in Carbo, Russell County, Virginia (USA), has impaired Clinch River biota through toxic spills in 1967 and 1970, and effluent copper (Cu) concentrations that were reported to have exceeded water quality criteria from 1985-1989. These impacts have provided impetus for many research projects addressing the absence of bivalves, including federally protected species of native mussels (Unionoidea), from sites influenced by CRP effluent. Modifications in CRP effluent during 1987 and 1993 drastically reduced Cu levels and warranted the present study, which assessed long-term biological recovery in Clinch River biota near the CRP.
In 2000-2001, surveys of benthic macroinvertebrate communities and instantaneous measures of effluent toxicity did not foretell significant reductions in survivorship and growth of field-caged Asian clams (Corbicula fluminea) at sites downstream of the CRP. More importantly, these results indicated renewed toxicity in CRP effluent. Additional transplant studies using two enclosure types were conducted to isolate effects attributable to CRP effluent from the potentially confounding effects of substrate variability among study sites. While it was found that mean growth of clams was greatest in the enclosure that minimized substrate variability (p=0.0157), both enclosure types clearly distinguished significant impairment of survivorship and growth at sites downstream of the CRP discharge, and strengthened the association between impairment and CRP effluent. An intensive field investigation was undertaken to determine whether impairment observed in transplant studies extended to resident bivalves. During 2001-2002, densities and age structures of C. fluminea and distributions of mussels suggested that impairment indeed extended to resident bivalves for a distance of 0.5 to 0.6 km downstream of the CRP discharge. Impairment of bivalves was less evident below (1) a fly ash landfill and (2) coal mining activities and low-volume leachate from a bottom ash settling pond.
With respect to long-term recovery, modifications in CRP effluent treatment have reduced Cu concentrations from an average of 436 mg/L in 1985-1989 to 13 mg/L in 1991-2002. Subsequently, Cu body burdens of Asian clams (Corbicula fluminea) transplanted within CRP influence have decreased from 442% of levels accumulated at reference sites in 1986, to 163% of these levels in 2002. The reduction in effluent Cu largely explains recovery of most benthic macroinvertebrate community parameters (e.g., richness, diversity) at influenced sites from levels that were typically less than 70% of reference levels, to levels that frequently range from 80 to greater than 100% of reference levels. Nevertheless, bivalves remain impaired downstream of the CRP; survivorship and growth of C. fluminea transplanted to CRP-influenced sites have typically been less than 40 and 20% of reference values, respectively. Furthermore, C. fluminea has seldom been encountered within CRP influence for nearly two decades. Likewise, native mussels remain absent within CRP influence, but recent surveys suggest their downstream distributions are more proximate to the CRP discharge than has been reported previously.
A preliminary assessment of factors potentially contributing to toxicity revealed that (1) water reclaimed from settling basins for discharge with CRP effluent significantly impaired fecundity of ceriodaphnids at concentrations of 50%, (2) LC50 values for industrial treatment chemicals were misrepresented on Material Safety Data Sheets and consequently, were subject to misapplication by operators, (3) Cu concentrations of 96 mg/L significantly impaired growth of Asian clams in artificial stream testing, and (4) effluent Al exceeded acute and chronic water quality criteria, suggesting this ion should receive further consideration in future studies. / Master of Science
|
72 |
An Ecotoxicological Evaluation of the North Fork Holston River below Saltville, Virginia and Identification of Potential Stressors to Freshwater Mussels (Bivalvia:Unionidae)Echols, Brandi Shontia 30 April 2007 (has links)
Mercury contamination of the North Fork Holston River below Saltville, Virginia has nearly extirpated most mussel populations. Because natural recovery of these populations has not occurred, this research combined field and laboratory assessments to determine the extent of ecological impairment in the river. In situ 60-day Asian clam (Corbicula fluminea) growth studies in 2005 showed a positive correlation (p=0.03) between low clam growth and sediment mercury levels. Because of severe low flow conditions of the NFHR in late 2005 conductivity dissipation from a point source brine discharge downstream rarely reached background level (~345 µS/cm) and was observed as high as 690 µS/cm 640 m below the discharge site. In addition, conductivity doubled in the river section adjacent to the remediated Ponds 5 and 6 (rm 81.6 and 80.4). Such low flow conditions (mean flow < 50 ft3/sec) occur in the NFHR approximately every five years. This low flow situation also evidenced a thick white flocculent or floc observed to accumulate at the base of the two remediated ponds. Analysis of the flocculent determined it to be high in aluminum (1.9-38 mg/L) and iron (2.0-51.0 mg/L), well above US Environmental Protection Agency Water Quality Criteria limits (0.0087 and 1.0 mg/L, respectively); riverine sediments collected below the accumulated floc also had high levels of calcium (240,000-380,000 mg/kg) and mercury(0.62-1.7 mg/kg). Acute tests with juveniles of Villosa iris and <24-hr old Ceriodaphnia dubia were used to measure the toxicity of the brine discharge, which had a conductivity of ~ 14,000 µS/cm. Results of these tests indicated C. dubia to be more sensitive than V. iris; however, chronic toxicity test results were similar for V. iris and C. dubia. The Lowest Observed Adverse Effect Concentration (LOAEC) for mussel survivorship after 28 days was 10,000 µS/cm, while the LOAEC for growth was 5,000 µS/cm. LOAECs for the C. dubia 7-day chronic were 25 % (survivorship) and 12.5 % (reproduction), while mean conductivity at these two concentrations was 4,054 and 2,211 µS/cm, respectively. Toxicity tests conducted with Pond 6 dyke cut discharges resulted in similar lethal concentrations for C. dubia and V. iris. Forty-eight hour LC50s of these discharges ranged from 12.07-15.95 % for C. dubia, and 17.36-18.95 % for V. iris. Dyke cut discharges also exhibited exceedingly high alkaline pH (11.5-12.2), which caused 100 % mortality to C. dubia in 15 min. The Pond 5 and 6 dyke discharges are the likely source for the flocculent accumulation at the base of the two remediated pond areas. The combined effect of mercury, aluminum and iron, along with periodic fluxes of high conductivity and alkaline pH during low flow conditions may contribute to low mussel recruitment downstream of Saltville, VA. / Master of Science
|
73 |
A Quantitative Survey of the Freshwater Mussel Fauna in the Powell River of Virginia and Tennessee, and Life History Study of Two Endangered Species, Quadrula sparsa and Quadrula intermediaJohnson, Matthew 26 May 2011 (has links)
Qualitative and quantitative sampling was conducted along a 165 km reach of the river from PRKM 269.4 near Dryden, VA to PRKM 104.8 near Harrogate, TN. Twenty-nine species were observed throughout the entire river, and the highest diversity of 23 species was collected at PRKM 152.6. Mussel abundances (mussels/person-h and mussels/m2) ranged from 0.33 to 21.98 mussels/person-h and 0.00 to 2.24 mussels/m2. Recent recruitment (individuals < 40 mm, depending on the species) was observed for 15 species, including the endangered Epioblasma brevidens, Lemiox rimosus, and Quadrula intermedia. The greatest number of species (6) with evidence of recent recruitment also was found at PRKM 152.6.
Data from the quantitative survey were used to simulate several sampling protocols that could be used to develop a long-term monitoring program for the Powell River. Five sites, PRKMs 197.9, 171.4, 159.6, 152.6, and 129.4, were selected for long-term monitoring because of high mussel densities and species richness. Six sampling protocols were simulated using the statistical program MONITOR to determine which protocols, if any, could monitor statistically significant changes in mussel abundance at rates + 10%. Each of the simulated sampling protocols lasted between 15 and 30 y, and employed quantitative sampling at 3 to 5 y intervals. None of the sampling protocols simulated during this study were able to detect declines in mussel abundance < 10%. Two sampling programs were able to detect increases in mussel abundance > 6% when the level of significance was > 0.10, and four sampling programs were able to detect a density increase of > 8% when the level of significance was 0.05.
Despite the inability to monitor declines in mussel abundances, a long-term monitoring program is needed for the Powell River. Because qualitative sampling has been repeatedly shown to document species presence more effectively than quantitative sampling, it should be used to monitor changes in species presence and distribution. Quantitative sampling should be employed to monitor juvenile recruitment and changes in size-class structure of populations. Quantitative sampling also should be conducted to monitor overall mussel abundance at sites. Despite the inability to statistically detect changes in mussel density in the Powell River, quantitative sampling can provide valuable information, and the data collected can be used to qualitatively monitor changes in total density at sites.
Both species share a similar distribution in the Powell River. Eighteen specimens of Quadrula sparsa were collected between PRKM 230.9 and 152.6, and 68 individuals of Q. intermedia were collected between PRKM 230.9 and 129.4. The highest density of each species was collected at PRKM 152.6, and recent recruitment was observed at PRKMs 152.6 and 153.4. Fresh-dead and relic shells of both species were thin-sectioned to determine individual growth rate and life span. These species complete the majority of their growth during the first 10 y of life, and likely live for a total of 40 to 50 y. One gravid female of Q. intermedia was collected during this study, but no gravid females of Q. sparsa were observed. / Master of Science
|
74 |
Toxicity of zinc, copper, and sediments to early life stages of freshwater mussels in the Powell River, VirginiaMcCann, Mary T. 11 July 2009 (has links)
The decline in mussel fauna of the Powell River has been attributed to extensive mining activities in headwater streams of Wise and Lee counties, Virginia. Surface mining causes erosion, sedimentation, and contamination of water with toxic substances from coal washing and waste piles. Historical water quality data of the Powell River have documented concentrations of metals at levels determined to be toxic to molluscs, specifically zinc (Zn) and copper (Cu). Acute toxicity tests with Zn, Cu, and mixtures of these two metals were conducted with glochidia and juvenile freshwater mussels. Effects of varying conditions such as water source, temperature, length of exposure, species, and lifestage were determined. Additionally, the effects of Powell River sediment on survival and growth of juvenile mussels were evaluated.
The Cumberland moccasin shell (Wedionidus conradicus) was the most sensitive species tested, with 24-hr and 48-hr LC50 values for glochidia ranging from 423 to 725 μg Zn/L. Glochidia of the pheasantshell (Actinonaias pectorosa) exhibited LC50 values from 274 to 2886 μg Zn/L, depending on test conditions. Similar results were obtained for glochidia of the rainbow (Villosa iris), with LC50 values ranging from 577 to 4123 μg Zn/L. Juveniles were more sensitive, with 48-hr LC50 values ranging from 360 to 1885 μg Zn/L for A. pectorosa, and 339 to 1122 μg Zn/L for V. iris, depending on test conditions. Juvenile mussels were affected by Zn at lower concentrations as evidenced by valve gaping and a swollen and nonresponsive foot. Copper was 5 to 15 times more toxic than Zn, with 48-hr LC50 values ranging from 52 to 156 μg Cu/L, and ECS5O values ranging from 25 to 115 μg Cu/L for juveniles of A. pectorosa. Copper appeared to exert a different toxic mode of action, as evidenced by closed valves and reduced siphoning. In general, sensitivities of early life stages of mussels to Zn and Cu increased with higher temperature, soft water, and length of exposure. At certain concentrations, Zn seemingly had an antagonistic effect (less than additive) when mixed with Cu. This effect was evidenced by reduced mortality of juveniles in Cu solutions when Zn was added at concentrations of about 400 to 800 μg/L. However, this antagonistic effect was not reflected in the percent of juveniles affected, which increased continuously with increasing metal concentrations.
Glass beads were found unsuitable as a control substratum for use in sediment testing with juvenile mussels. Results of sediment tests indicated that sediment in some areas of the Powell River may be toxic to juvenile mussels, and that toxicity may be linked to water quality. After 10 days, survival of juveniles in sediment collected downstream of a coal processing plant was significantly lower than survival in sediment upstream of the plant (p = 0.01). Further, survival in sediments with dechlorinated tap water was significantly higher than survival in sediment with river water (p = 0.0002). After 20 and 30 days, survival was similar among sites and water types. High metal concentrations in the river water appeared to contribute to toxicity, because juveniles in tap water displayed consistently better growth, and initially better survival than juveniles in river water and sediment. This toxicity was not apparent in sediments collected from the same sites less than two months later, suggesting the character of the sediments may change as new suspended sediment is deposited.
The USEPA water quality criteria for Zn (adjusting for water hardness) are 174 μg/L (acute) and 158 μg/L (chronic), whereas copper criteria are set at 28 μg/L (acute) and 18 μg/L (chronic). Powell River water samples collected during 1991 contained concentrations of Zn and Cu exceeding these criteria, as well as concentrations shown to have adverse effects on mussel populations. Results suggest that some metals are introduced into the river system in runoff, whereas Cu is being introduced as an episodic event. Intensive monitoring of water quality is needed to identify specific sources of metal pollution. If levels of heavy metal concentrations remain high, then the declining mussel populations of the Powell River will not recover, and endangered species may be extirpated from Virginia. / Master of Science
|
75 |
Assessment of Mussel Declines in the Clinch and North Fork Holston Rivers Using Histological Evaluations of Vital OrgansRogers, Jennifer J. 31 August 2015 (has links)
The Clinch River (CR) and North Fork Holston River (NFHR) contain some of the most diverse freshwater mussel assemblages in the United States; however, both rivers are experiencing declines in mussel populations. The first component of this study used histological evaluations and water quality data to determine whether mussels were negatively impacted in the CR zone of decline (ZD) and to inform future management of freshwater mussels in the river. In the 91 kilometer (km) section from Carbo, Virginia (CRKM 431) downstream to Speers Ferry, Virginia (CRKM 340), referred to as the ZD, mussel density decreased >90% from 1979 to 2014 at key sites such as Semones Island (CRKM 378.3) and Pendleton Island (CRKM 364.2). Laboratory propagated mussels were placed in cages in the river for one year from June 2012 to May 2013 at four sites within the ZD and four sites in reaches where mussel populations remain stable or are increasing, a zone of stability (ZS). The survival, growth and histological results indicated that there are continuing impacts to mussels in the ZD. Research investigating impacts to the ZD and methods to improve water quality in this zone are needed.
The laboratory component of this study examined sublethal effects of potassium (K⁺), chloride (Cl⁻), and un-ionized ammonia (NH₃-N) on mussel tissues at concentrations relevant to those found in the NFHR. Historical industrial activities at Saltville, Virginia, as well as continued pollution of the NFHR from chemical waste ponds at this location, are believed to be significant contributors to mussel declines. Contaminant seepages from the waste ponds that include Cl⁻, K⁺, and NH₃-N have been shown to be toxic to adult and juvenile mussels.
A three-month laboratory study was conducted to assess impacts to organ tissues (gills, digestive glands, kidneys, and gonads) of adult Villosa iris exposed to environmentally relevant concentrations of K⁻ (4 and 8 mg/L), Cl⁻ (230 and 705 mg/L), and NH₃-N (0.014 and 0.15 mg/L) using histological evaluations. No detectable differences were observed among the histological endpoints from mussels held in treatments and control (p>0.05). The study design was modified and repeated using increased concentrations of K⁺ (8, 16, and 32 mg/L) and Cl⁻ (705, 1410, and 2820 mg/L) for a two-month exposure period. Due to issues with maintaining NH3-N in mussel holding chambers, the second study did not the second study did not include NH₃-N exposures. Control mussels in both studies had a higher abundance of lipofuscin in kidneys and degraded cytoplasm in the digestive gland diverticula compared to baseline mussels, indicating that captivity influenced mussel tissues. Future studies are needed to more thoroughly address these captivity effects. Both survival and histological data in the second test showed a significant negative effect of the increased concentrations of Cl⁻ and K⁻, which were representative of those found at some sites in the NFHR downstream of Saltville, Virginia. / Master of Science
|
76 |
Assessment of morphological and molecular genetic variation of freshwater mussel species belonging to the genera Fusconaia, Pleurobema, and Pleuronaia in the upper Tennessee River basinSchilling, Daniel Edward 07 July 2015 (has links)
Select freshwater mussels in the genera Fusconaia, Pleurobema, and Pleuronaia were collected primarily in the upper Tennessee River basin from 2012 to 2014 for phylogenetic and morphological assessments. Freshwater mussels in these genera are similar in appearance, hence the need for phylogenetic verification and morphological assessment. Phylogenetic analyses of the mitochondrial gene ND1 and the nuclear gene ITS1 revealed three unrecognized, phylogenetically distinct species. These species were separated from their closest congener by 2.85%, 3.17%, and 6.32% based on pairwise genetic distances of ND1. Gaps created from aligning ITS1 sequences were coded as fifth characters, which phylogenetically separated most closely related species. Analyses of ND1 agreed with previous literature on the phylogenetic distinctiveness of Pleuronaia species, with the exception of the DNA sequences of P. gibberum, which grouped outside this genus based on the analyses conducted in this study.
Morphological variation was recorded for eight of the species to include quantitative and qualitative characters as well as geometric morphometric analyses. Three decision trees were created from quantitative and qualitative characters using classification and regression tree analyses. The best-performing tree used quantitative and qualitative characters describing shell-only scenarios and obtained 80.6% correct classification on terminal nodes. Canonical variates analysis on geometric morphometric shell data revealed large morphological overlap between species. Goodall's F-tests between pairs of species revealed significant differences (a=0.05) between all but one species pairs; however, examination of landmarks on shells concluded large overlap of landmarks between species pairs. Lack of morphologically distinct characters to readily identify these phylogenetically distinct species indicates large morphological overlap among these species. Biologists need to be cognizant that morphologically cryptic species may exist in systems often explored.
Three dichotomous keys were created from classification trees to identify select individuals in the genera Fusconaia, Pleurobema, and Pleuronaia; two of these keys, one for shells and one for live mussels were tested by participants with varying mussel identification skills to represent novices and experts. Both keys used continuous (quantitative) and categorical variables to guide participants to identifications. Novices, who had no prior mussel identification experience, correctly identified mussels with a 50% accuracy using the shell key and with a 51% accuracy using the live key. Experts, who had at least three years of experience identifying mussels, correctly identified mussels with a 58% accuracy using the shell key and with a 68% accuracy using the live key; however one expert noted that they did not use the live key to correctly identify one mussel. Morphological overlap of variables between mussels likely resulted in failure to consistently identify mussels correctly.
Important management decisions and project implementations require accurate assessment of species' localities and populations. Incorrect species identification could hinder species' recovery efforts or prevent projects that otherwise could have continued if species are misidentified. If a mussel collection is thought to be a new record or could affect a project, I recommend that molecular genetic identifications be used to verify the species identity. / Master of Science
|
77 |
Coal waste deposition and the distribution of freshwater mussels in the Powell River, VirginiaWolcott, Lisa Terwilliger 03 March 2009 (has links)
A survey of the freshwater mussel fauna was conducted in the Powell River, Virginia, to identify critical habitat for endangered species, quantify substratum composition and coal waste deposition, and to assess population trends during the last half century. Mussels were collected as far upstream as Powell River Mile (PRM) 167.4 near Dryden, Virginia. Endangered species were collected up to PRM 144.6 at Jonesville, Virginia. The sites with greatest diversity were located furthest downstream, and there appeared to be a general decline in the number of species and diversity of mussels from downstream to upstream. Mussel densities also declined proceeding upstream, and specimens were rare above PRM 158.3 near Pennington Gap, Virginia. The highest density occurred at PRM 123.0 near the Tennessee-Virginia border, with 24 mussels/m². Collections per unit effort of sampling concurred with quadrat surveys, indicating a decline in abundance and diversity upstream. Length frequency distributions of the muckets Actinonaias pectorosa and A. ligamentina indicated an absence of smaller mussels at most sites.
Sediment samples, collected in riffles at 10 sites to determine particle size distributions and the amount of coal, showed no apparent trends in waste coal from downstream to upstream; however, there were significant negative correlations between PRM location and various fractions of the substratum, indicating a longitudinal sorting of smaller size fractions. Percentages of very fine to medium sand, silt, and coal show marked increases downstream of the North Fork Powell River confluence (PRM 156.6) at Pennington Gap, Virginia. Mussel density had a slightly positive correlation with percent silt (r²=0.346, p=0.0736) but was not correlated with percent coal.
Juvenile mussels of Villosa iris were placed on several types of substratum to determine differences in survival. In laboratory experiments, survival of juveniles on coal silt sometimes did not differ from that of juveniles without substratum (survival close to 100%). Survival of juveniles without substratum (93.9%), however, was significantly higher than survival (30.0-63.2%) on three sediment types from the Powell River (p< .001). In field experiments, there was a marginally significant difference in survival of juveniles between two sites (p =.070), with higher survival (47.7%) in sediments from Poteet Ford (PRM 144.6). Survival of juveniles was similar in all laboratory and field experiments.
A decline in density of the mussel fauna in the Powell River over the past 15 years was apparent when compared to previous data. Contamination and siltation from coal washing facilities and abandoned mine lands are suspected of contributing to this decline. / Master of Science
|
78 |
Development of a suitable diet for endangered juvenile oyster mussels, Epioblasma capsaeformis (Bivalvia:Unionidae), reared in a captive environmentVincie, Meghann Elizabeth 27 January 2009 (has links)
Epioblasma capsaeformis, commonly named the oyster mussel, once occupied thousands of miles of stream reaches, but has now been reduced in range to small, isolated populations in a few river reaches. Due to this significant decline in population numbers, a study was conducted to develop a diet for propagating this endangered species under captive conditions. Oyster mussel juveniles were collected from several sites on the Clinch River and sacrificed for gut content and biochemical composition analyses in summer. Feces and pseudofeces from live river-collected juveniles were examined seasonally for algae, detritus, and bacteria to qualitatively determine diet of specimens. Two feeding trials also were conducted in this study to evaluate effect of diet (commercial and non-commercial diets), on growth and survival of oyster mussel juveniles.
From examination of gut contents, fecal and pseudofecal samples, it was apparent that algae and a significant amount of detritus (~90%) composed wild juvenile diets. E. capsaeformis juveniles (1-3 y of age) could have fed on particles up to 20 µm in size and seemed they were mostly ingesting particles within the 1.5-12 µm size range. Protein content of sacrificed juveniles ranged from 313 to 884 mg/g and was highly variable. Glycogen content ranged from 49-171 mg/g. Caloric content of four juveniles ranged from 2,935.10 to 4,287.94 cal/g, providing a preliminary baseline range for future energetic studies on freshwater mussels.
Growth was significantly higher in those juveniles fed the triple concentration algae-mix (62,076 cells/ml) than all other diets tested in trial 1. Results of both feeding trials indicated that survival of juvenile oyster mussels was enhanced when fed an algal diet supplemented by bioflocs. / Master of Science
|
79 |
Sediment and Interstitial Water Toxicity to Freshwater Mussels and the Ecotoxicological Recovery of Remediated Acid Mine Drainage StreamsSimon, Matthew Larson 18 November 2005 (has links)
The river drainages originating in the Cumberland region of Virginia, Tennessee and Kentucky are home to some of the last surviving and most diverse assemblages of native freshwater mussels. This region of the country also has historically and continues to be a major source of coal for the United States. Numerous experiments were carried out in an attempt to determine what ecotoxicological effects these activities have had on mussels as well as what has been done to correct some of the most severe cases of environmental pollution due to historical coal mining operations. Analysis of interstitial water (IW), sediment and in situ toxicity testing and chemical analyses showed that the most likely cause for mussel declines was elevated metal concentrations (Al, Cu, Fe, Pb) found in IW. Ecotoxicological assessments of the two streams (Black and Ely Creeks) most impacted by acid mine drainage (AMD) in the state of Virginia were carried out to determine their potential for future degradation of the Powell River watershed into which they drain. The Powell River is a major system still inhabited by native mussels. Sophisticated wetland systems built at Ely Creek have significantly improved the ecological health of Ely Creek, decreasing the pollution into the Powell River. Reclamation and wetland construction at Black Creek have had a positive impact but active coal mining and un-remediated AMD are still negatively affecting this system. After the watershed has been fully reclaimed the discharge from Black Creek will likely be improved. / Master of Science
|
80 |
Population Biology of the Tan Riffleshell (<I>Epioblasma florentina walkeri</I>) and the Effects of Substratum and Light on Juvenile PropagationRogers, Susan Owen 16 December 1999 (has links)
The federally endangered tan riffleshell (<I>Epioblasma florentina walkeri</I>) is restricted to only one known reproducing population, in Indian Creek, Tazewell County, Virginia. Attempts to recover this species by augmenting relic populations throughout its historic range are aided through knowledge of its population biology and requirements in culture environments. Infestations of host fish (fantail darters, <I>Etheostoma flabellare</I>), obtained from four river drainages, with tan riffleshell glochidia showed that significantly more juveniles transformed per fish from infestations on fantail darters from Indian Creek (mean = 59.22 ± 10.01) than on fantail darters from the Roanoke River (mean = 9.45 ± 10.64) (p = 0.024). Number of juveniles from fantail darters collected from Elk Garden and the South Fork Holston River were not significantly different from those of either Indian Creek fish or Roanoke River fish. These results support the hypothesis that mussel-host fish relationships are likely mediated by fish immune responses. Furthermore, this study suggests that this compatibility has resulted from coadaptation between the tan riffleshell and fantail darter populations in Indian Creek.
The tan riffleshell population in Indian Creek was estimated to be 1078 adults (95% CI= 760 - 1853), using Schumacher's modification of Schnabel's maximum likelihood estimator. The sex ratio and size distribution of males and females were approximately equal. Specimen ages, determined from thin-sections of shells, showed that mussels aged by external annuli on shells likely underestimates the true ages of individuals.
Appropriate culture conditions for this species were examined using juveniles of the wavyrayed lampmussel (<I>Lampsilis fasciola</I>) as a surrogate. In the first experiment, juvenile growth and survival was compared between four substratum types (fine
sediment, < 120μm; fine sand, 500 μm-800 μm; coarse sand, 1000 μm-1400 μm; and mixed sediment, < 1400 μm) and two light treatments in open versus covered recirculating troughs (2.8 m). Juveniles in fine sediment substratum and covered troughs fared poorest, with 7% survival and growth to only 0.86 mm in length after 16 wk. Juveniles in mixed sediment and open troughs fared best, with 26% survival and growth to 1.09 mm after 16 wk. Additionally, juveniles in fine sand in covered troughs had significantly higher survival (23.1%) than juveniles in fine sediment (p = 0.04), and juveniles in fine sand survived consistently better between light treatments than in the other substrata. There were no significant differences among the other treatments.
A second experiment was performed to determine whether juveniles were responding directly to the presence of light or whether only the increased autochthonous production improved growth and survival. One-half of each of three 2.8 m troughs were covered with 50% shade cloth, while the other sides were left open to ambient light. Additionally, the best and worst sediments from the first experiment (fine sand and fine sediment) were used again to verify the results from the previous experiment. In this case, juveniles in both sides of the troughs grew equally well, but juveniles in the open sides had significantly poorer survival (open mean: 1.78%, sd = 5.01; covered mean: 7.4%, sd = 5.01) (p = 0.046). Fine sediment yielded significantly higher growth of juveniles than fine sand (p = 0.009), with shell lengths of 2.63 mm (sd = 0.075) in fine sediment and 1.94 mm (sd = 0.102) in fine sand. The differences in survival and growth between the two experiments were attributed to differential numbers of chironomids and platyhelminths, which are predators of young juveniles. Additionally, the fine sediment was more tightly packed in the first experiment than in the second, which may have restricted movement and subsequently reduced survival. Light alone likely did not affect juvenile survival and growth; rather, it was seemingly the greater abundance of aufwuchs available as food. This hypothesis was corroborated by a juvenile behavior experiment, which showed that juveniles did not act differently when in tanks not exposed to light versus those open to ambient light. / Master of Science
|
Page generated in 0.1001 seconds