Spelling suggestions: "subject:"friction ftir"" "subject:"friction tir""
181 |
The Microstructural Evolution and Constitutive Analysis For A Phisical Simulation of Friction Stir Processing of Ti-6Al-4VLivingston, Jason James 22 July 2011 (has links)
No description available.
|
182 |
The Effects of Tool Texture on Tool Wear in Friction Stir Welding of X-70 SteelMichael, Eff 31 August 2012 (has links)
No description available.
|
183 |
The Effects of Tool Texture on Tool Wear in Friction Stir Welding of X-70 SteelEff, Michael 20 June 2012 (has links)
No description available.
|
184 |
Material Flow and Microstructure Evolution during Additive Friction Stir Deposition of Aluminum AlloysPerry, Mackenzie Elizabeth Jones 02 September 2021 (has links)
Serious issues including solidification porosity, columnar grains, and large grain sizes are common during fusion-based metal additive manufacturing due to the inherent melting and solidification that occurs during printing. In recent years, a high-temperature, rapid plastic deformation technique called additive friction stir deposition (AFSD) has shown great promise in overcoming these issues. Because the deposited material stays in the solid state during printing, there are no melting and solidification events and the process can result in as-printed material that is fully-dense with equiaxed, fine grains. As AFSD is an emerging process, developing an understanding of the synergy between material deformation and the resultant microstructure evolution, especially the strain magnitude, its influence on dynamic microstructure evolution, and material flow details, is imperative for the full implementation of AFSD. Therefore, the purpose of this work is to investigate the severe plastic deformation in AFSD through complementary studies on the concurrent evolution of shape and microstructure during the deposition of dissimilar aluminum alloys. In this work, we systematically study (1) the entire deposition via dissimilar cladding along with (2) specific volumes within the deposited layer via embedded tracers printed at varied processing parameters. X-ray computed tomography and electron backscatter diffraction are employed to visualize the complex shape of the deposits and understand the microstructure progression.
Investigation of dissimilar cladding of homogeneous AA2024 feed-rods onto an AA6061 substrate establishes a working understanding of the mechanisms related to material flow and microstructure evolution across the whole deposit (macroscopic shape evolution) as well as at the interface between the deposit and the substrate. Variations in tooling and rotation rate affect the interfacial features, average grain size, and depth of microstructural influence. The non-planar and asymmetric nature of AFSD on the macro-scale is revealed and a maximum boundary of deposited material is established which gives a frame of reference for the next material flow study within the deposition zone.
An understanding of the mesoscopic morphological evolution and concurrent dynamic microstructure evolution of representative volumes within the deposition zone is determined by comparing depositions of hybrid feed-rods (AA6061 matrix containing an embedded tracer of AA2024). Samples were printed with and without an in-plane velocity to compare initial material feeding to steady-state deposition. Variations in initial tracer location and tool rotation rate/in-plane velocity pairs affect the final morphology, intensity of mixing, and microstructure of the deposited tracer material. The tracer material undergoes drastic mesoscopic shape evolution from millimeter-scale cylinders to long, curved micro-ribbons. There is simultaneous grain refinement in AA2024 via geometric dynamic recrystallization during initial material feeding, after which the grain size remains relatively constant at a steady-state size. The lower bound of strain is estimated based on extrusion, torsion, and shear-thinning factors.
The step-by-step mesoscopic deformation and microstructure evolution is further elucidated by characterizing depositions of hybrid feed-rods with a series of embedded tracers. The AFSD tooling is stopped quickly at the end of the deposition with a quench applied to "freeze" the sample. X-ray computed tomography reveals multiple intermediate morphologies including the progression from a cylinder to a tight spiral, to a flattened spiral shape, and to a thin disc. EBSD mapping shows that a refined microstructure is formed soon after the material leaves to tool head with areas off the centerline reaching a fully recrystallized state more quickly. The findings from this work summarize the current understanding of the link between material deformation and microstructure evolution in AFSD. Hopefully these first fundamental studies on the co-evolution of material flow and grain structure during AFSD can inspire future work, especially in the area of heterogeneous multi-material printing. / Doctor of Philosophy / Additive friction stir deposition (AFSD) is a new metal 3D printing process that uses friction to heat up and deposit materials rather than using a laser to melt the material into place. This is beneficial since it avoids problems that come from melting and solidification (e.g., porosity, hot cracking, residual stresses, columnar grains). Since AFSD is such a new technology, an understanding of some of the fundamental processing science is needed in order to predict and control the performance of the resultant parts. This is because the processing of a material affects its structure (at multiple scales, for example macro-, micro-, atomic) which then affects the properties a material will exhibit which, finally, dictates the performance of the overall part. Therefore, the purpose of this work is to explore how the feed material is transformed and deposited into the final layer after printing and to link the original processing conditions to the resultant structure. To investigate the interface between the deposited layer and the substrate, we use a simple feed-rod of one aluminum alloy (AA2024) and deposit it onto a substrate of another aluminum alloy (AA6061). To look at just one small volume within the deposited layer, we use a hybrid feed-rod that is mostly AA6061 except for small cylinders of AA2024 that are placed either in the center or on the edge of the feed-rod so that we can track the AA2024. Printing these feed-rods under different processing conditions will help us understand the connection between processing and structure. Using a characterization technique called X-ray computed tomography we can visualize a 3D representation of the final position for the AA2024 material. In order to evaluate the structure on the micro-scale, a characterization technique called electron backscatter diffraction is used to show the individual grains of our metal. The main contributions of this work are as follows: 1) a lower bound of strain is estimated for AFSD, 2) various intermediate deformation steps are captured for the tracer cylinders including a progression from cylinder to multiple spiral shapes to a thin disc to long ribbons, 3) these deformation steps are linked to different microstructures, and 4) changing the tool geometry and other processing parameters significantly alters the range of shapes and microstructures developed in the deposited material. These findings bring us closer to a fully controllable system as well as sparking some interesting areas for future research because of the complex shapes we observed. These results could lead to the customization and optimization of 3D spirals, ribbons, etc. designed for a certain application.
|
185 |
Origins of Embrittlement of an Al-Zn-Mg-Cu Alloy Post Additive Friction Stir DepositionYoder, Jake King 03 January 2023 (has links)
Additive Friction Stir Deposition (AFSD) is a solid state, bulk, metal additive manufacturing technology that seeks to replace certain castings and forgings wherever it is economically feasible among other applications. Critical to its deployment is an in depth understanding of how the solid state deposition process effects engineering alloys used in relevant applications. In this work, an aerospace aluminum alloy 7075 is evaluated both in the as deposited and heat treated condition via age hardening studies and tensile testing. It is found that an embrittlement phenomena occurs that is sensitive to processing parameters and quench rate during heat treatment. Through the use of SEM, TEM, and APT the embrittlement phenomena has been linked to excessive grain boundary precipitation caused by a combination of shear induced mixing and shear induced segregation which allow for the formation of phases at grain boundaries that are slow to dissolve, leaving the grain boundary in a non-equilibrium solute rich state. Critical to this process is the role of dispersoid particles, which are modified by shear processes which provide high energy spots for thermally stable precipitate nucleation. Removal of these dispersoid particles by an alloy modification had been shown to eliminate the embrittlement effect after depositing in a condition where embrittlement is expected for the unmodified 7075. Further work demonstrates the different relationships between processing conditions and the degree of embrittlement for three different tool types. Beyond the implications of the particular alloy studied, this work highlights the fundamental concepts involved when a manufacturing process operates at high strain rates and total strains which can be used for the design of alloys meant for AFSD. / Doctor of Philosophy / Additive Friction Stir Deposition (AFSD) is a new 3D printing process for metals where deformation is used to deposit material in an additive fashion. This work involves understanding and solving an embrittlement issue that occurs during heat treating after deposition for a particular aluminum alloy (7075). In this work, the origins of the embrittlement phenomena are uncovered which have to do with the degree and severity of deformation. Several solutions including alloy development and process control are successfully demonstrated.
|
186 |
Mechanical and Physical Properties in Additive Friction Stir Deposited AluminumWells, Merris Corinne 18 July 2022 (has links)
The goal of this research is to aid the development of large-scale additive manufacturing of jointless underbody hulls for the Army Ground Vehicle Systems by 1) generating an improved mechanical and metallurgical database and 2) understanding the Additive Friction Stir Deposition (AFSD) process. AFSD is a solid-state additive manufacturing process that is a high strain rate and a hot working process that deforms material onto a substrate and builds a component layer by layer. This unique, solid-state additive manufacturing process has the potential for scalability into ground vehicle applications on the extra large-scale due to its solid-state nature. Two different aluminum alloys were investigated: Al-Mg-Si (6061) and Al-Zn-Mg-Cu (7075). AFSD builds were evaluated in the transverse or through layer direction (Z) and the 6061 material was also evaluated in the longitudinal direction (X). Uniaxial tensile testing was performed to generate mechanical property data while fractography, and metallography were used to better understand the metallurgical implications of this process. This research determined that the refinement of the grain size caused by the AFSD process had little or no strengthening effect on the mechanical properties of either alloy. Instead, the as-deposited condition in both alloys were soft with good ductility due to the dissolution of the strengthening particles. After heat treatment, the elongation and fracture mode of the 6061 alloy was dependent on the layer direction. Failure often initiated at interfaces and affected the materials' elastic-plastic behavior. For the 7075 alloy, the strength and failure mechanism of the material were affected by the presence of the graphite lubricant used during processing. The use of graphite increased the variability of the mechanical properties results and caused premature failure in numerous samples. In both alloys, the heat treatment caused grain coarsening to varying degrees which can affect the mechanical behavior. From these results, it was found that a precipitation strengthening heat treatment is required for material deposited with AFSD to achieve the minimum mechanical property standards for a forging. Recommendations and future work include 1) investigating the effect of residual stresses on AFSD components, 2) determining the fatigue properties of AFSD materials, 3) continuing to increase the database of mechanical properties for AFSD materials, and 4) developing additional lubricants for the AFSD process. / Master of Science / The results of this research will be used to help generate design requirements for large-scale additively manufactured parts such as underbody tank hulls. This research generated and expanded on the mechanical and metallurgical understanding of solid-state additively manufactured aluminum. The solid-state additive process used was Additive Friction Stir Deposition. Like its name, this process uses a rotating tool head to apply friction to a solid bar of aluminum that then generates heat which makes the metal soft enough to stir and deposit into a layer. Another layer is then deposited on top and repeated layer by layer until the final part is completed. Other metal additive manufacturing processes that involve melting and then rapidly cooling the material degrade the quality of the metal material.
The first part of this research investigated the mechanical properties in different layer directions either pulling along the build direction or against the layers. The results showed that a heat treatment was required to improve the strength of the aluminum to meet current standards of quality. However, the ability of the aluminum to elongate depended on the orientation of the layers.
The second part of this research investigated the effect that a graphite lubricant used on the aluminum feedstock to help prevent the material from sticking in the tool head affected the mechanical properties. The results show that the graphite lubricant did not dissolve or disappear into the metal and caused a reduction in the elongation of the aluminum. Recommendations for extra large-scale metal additive manufacturing are to design parts to apply the highest stress along the layer direction and to eliminate the use of the graphite lubricant.
|
187 |
Fabrication of AA6061/316 composites via a double pin FSP toolLiu, S., Paidar, M., Mehrez, S., Ojo, O.O., Cooke, Kavian O., Wang, Y. 12 September 2022 (has links)
Yes / In this study, a new double pin tool was utilized for the development of AA6061/316 stainless steel reinforced composite by employing the friction stir processing technique for the first time. The microstructure, hardness, tensile, tribological, and corrosion behaviors of the fabricated composites were investigated and comparative assessments were made with the results obtained from the single-pin tool. The results showed that particle-matrix reaction did not occur in the composites irrespective of the nature of the tool profile. The double-pin tool outstandingly boosted the grain refinement (7.01–5.78 μm), particle fragmentation, and distribution within the Al matrix due to the additional pin-assisted plastic deformation, high straining, dynamic recrystallization, and Zener pinning effects. The double-pin tool improved the microhardness (127–141 HV), tensile strength (162–233 MPa), and corrosion resistance of the composite with respect to the single-pin tool counterparts. The replacement of the single pin tool with a double pin tool diminished the specific wear rate (0.38–0.22 mm3/Nm) of the composite. The double-pin tool has a favourable impact on the structure, mechanical, and corrosion behaviours of the AA6061/316 stainless steel reinforced composite. It is thus recommended for composite development.
|
188 |
Comparative analysis between friction stir welding and automatic riveting in the assembly of aircraft structuresSala Diakanda, Serge N. 01 April 2003 (has links)
No description available.
|
189 |
Refill Friction Stir Fastener Repair in AA7050-T7451Curtis, Andrew John 22 June 2023 (has links) (PDF)
The majority of Refill Friction Stir Spot Welding (RFSSW) is used to join two materials together oriented in a lap joint configuration. In this study, RFSSW was investigated and tested using an unconventional configuration setup, a hole/plug insertion approach. RFSSW was tested as a means of repairing a cracked rivet hole due to excessive use conditions. This was done by inserting a plug into a hole and using the RFSSW process to bond the plug to the base material. Machine and tool limits were investigated to determine if a refilled plug repair was possible and if complete mixing between plug/hole interface was attainable. Plug/hole homogenization was assessed via metallographic polishing of weld cross sections. Properties of the repaired aluminum alloy including both dynamic and and quasi-static tensile tests were also evaluated.
|
190 |
Caracterização da reatividade das ligas alumínio AA2024-T3 e AA7475-T651 soldadas por fricção (FSW) / Characterization of the reactivity of aluminium alloys AA2024-T3 and AA7475-T651 welded by Friction Stir Welding (FSW)Abreu, Caio Palumbo de 09 December 2016 (has links)
A soldagem por fricção (Friction Stir Welding - FSW) é um processo eficiente de unir ligas de alumínio de alta resistência evitando defeitos que são usualmente criados quando técnicas convencionais de soldagem são utilizadas. A indústria aeronáutica tem mostrado grande interesse neste método de soldagem, tanto para a união de ligas similares como dissimilares. Entretanto, este processo causa modificações microestruturais dependentes das condições de tratamento térmico ou termomecânico. Contato elétrico entre zonas de microestruturas diferentes, por sua vez, pode resultar em acoplamento galvânico. No presente estudo, a soldagem por FSW foi usada para unir duas ligas de alumínio dissimilares, AA2024-T3 e AA7475-T651 e o efeito desta soldagem na resistência à corrosão das juntas soldadas e na microestrutura das ligas foi avaliada. Na investigação da resistência à corrosão foram utilizados ensaios eletroquímicos, especificamente, medidas de potencial de circuito aberto (OCP) em função do tempo de exposição ao meio corrosivo, ensaios de polarização e de espectroscopia de impedância eletroquímica, global (EIS) ou local (LEIS), em duas soluções, seja 0,1 M Na2SO4 ou 0,1 M Na2SO4 + 1 mM NaCl. Os ensaios eletroquímicos evidenciaram efeito de acoplamento galvânico nas juntas soldadas. A caracterização microestrutural foi realizada por microscopia ótica, microscopia eletrônica de varredura, microscopia eletrônica de transmissão e por calorimetria diferencial. As zonas afetadas pela solda tiveram importantes modificações na microestrutura indicadas pela precipitação e dissolução de precipitados que afetam a resistência à corrosão localizada. A resistência à corrosão intergranular e a resistência à esfoliação das juntas soldadas também foram avaliadas e comparadas com as das ligas AA2024-T3 e AA7475-T651 não soldadas. Os resultados mostraram aumento da suscetibilidade das juntas soldadas a estas formas de corrosão em comparação com as ligas não soldadas sendo observado ataque mais severo na liga AA7475-T651. A identificação das áreas anódicas e catódicas resultantes do acoplamento galvânico nas juntas soldadas foi realizada por teste que consistiu na deposição de camada de gel (ágar-ágar) com indicador universal na superfície das ligas soldadas. A liga AA2024-T3 atuou como cátodo, enquanto a AA7475-T651, como ânodo no par galvânico. Além disso, evolução de hidrogênio foi observada na região de interface entre a zona termomecanicamente afetada e a termicamente afetada da liga AA7475-T651 mostrando que reações catódicas também ocorreram localmente nesta última liga. Resultados de LEIS obtidos nas diferentes zonas das duas ligas soldadas por FSW mostraram acoplamento galvânico na interface entre elas para tempos curtos de ensaio e deslocamento da região mais ativa com o tempo de ensaio para a liga AA7475-T651, mais precisamente para a interface entre a zona termomecanicamente afetada e a térmicamente afetada desta liga. / Friction Stir Welding (FSW) is an efficient process of joining high strength aluminum alloys avoiding defects that are usually created when conventional welding techniques are used. The aircraft industry has shown great interest in this welding method, both for welding of similar or dissimilar alloys. However, this process causes microstructural changes that are dependent on the thermal or thermomechanical conditions applied. Electrical contact between zones of different microstructures, in turn, can result in galvanic coupling. In the present study, FSW was used to join two dissimilar aluminum alloys, AA2024-T3 and AA7475-T651 and the effect of this process on the corrosion resistance of the welded joints and on the microstructure of the alloys was evaluated. For corrosion resistance evaluation, electrochemical tests were used, specifically, open circuit potential measurements (OCP) as a function of time of exposure time to the corrosive environment, polarization tests, and electrochemical impedance spectroscopy, global (EIS) or local (LEIS), in two solutions, either 0.1 M Na2SO4 or 0.1M Na2SO4 + 1 mM NaCl. The electrochemical tests showed galvanic coupling effects in the welded joints. Microstructural characterization was carried out by optical microscopy, scanning electron microscopy, transmission electron microscopy and differencial scanning calorimetry. The welded affected zones showed significant microstructural changes indicated by precipitation and dissolution of precipitates that affect the localized corrosion resistance. Intergranular and exfoliation corrosion resistance of the welded joints were also evaluated and compared to those of unwelded AA2024-T3 and AA7475-T651 alloys. The results showed increased susceptibility of welded joints to these forms of corrosion in comparison with the unwelded alloys with more severe attack associated to the AA7475-T651 alloy. Identification of anodic and cathodic areas due to galvanic coupling in the welded joints was evaluated by a test consisting in depositing a gel layer (ágar-ágar) with universal indicator on the surface of the welded alloys. The AA2024-T3 alloy worked as cathode, while the AA7475-T651 as anode in the galvanic coupling. Furthermore, hydrogen evolution was observed at the interface region between the thermomechanically affected zone and the heat affected alloy AA7475-T651 showing that cathodic reactions also occurred on this last alloy. LEIS results obtained in different zones of the two FSW welded alloys showed galvanic coupling at the interface between them for short test times and displacement of the most active region to the AA7475-T651 alloy, at longer periods of test, specifically to the interface between the thermomechanically affected and the heat affected zones of this last alloy.
|
Page generated in 0.095 seconds