• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1097
  • 436
  • 228
  • 121
  • 81
  • 48
  • 38
  • 37
  • 23
  • 7
  • 6
  • 5
  • 4
  • 3
  • 2
  • Tagged with
  • 2542
  • 456
  • 436
  • 376
  • 341
  • 315
  • 298
  • 295
  • 224
  • 215
  • 205
  • 202
  • 187
  • 184
  • 172
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
531

Investigation of Skin Tribology and Its Effects on Coefficient of Friction and Other Tactile Attributes Involving Polymer Applications

Darden, Matthew Aguirre 2010 December 1900 (has links)
Perception and sense of touch are extremely important factors in design, but until recently, the exploration of skin tribology related to tactility has been relatively untouched. In this emergence, skin-on-polymer interactions are becoming more widely investigated due to the prevalence of polymers in everyday life, and the ability to define these interactions in terms of tactility would be hugely beneficial to the engineering and design process. Previous work has investigated polymer textiles concerning tactility, examining environmental and material properties that affect skin on fabric coefficient of friction. In this study, similar friction procedure was used to compare coefficients of friction of a fingerpad across varying polymer fabrics. Forces were applied in both longitudinal and lateral directions, and it was discovered that force directionality greatly affects coefficient of friction. Specific causes have yet to be determined, but it is suspected that material weave and microscopic surface properties play a major role in this directional behavior. To complement these studies and relate them to tactility, trained human evaluators rated the samples against four tactile attributes: abrasiveness, slipperiness, sensible texture, and fuzziness. These ballots were then analyzed with Quantitative Data Analysis and shown to be repeatable among the participants, and each of the attributes were shown to be statistically independent of coefficient of friction. It should be noted, however, that fuzziness showed the greatest correlation coefficient of R^2=0.27. Material selection plays an integral role in frictional behavior, and researchers have been studying contact theory on both microscopic and macroscopic levels to determine how surface topography affects skin-polymer tribology. To negate material effects discussed in the Greenwood-Williamson contact model, frictional tests were performed on identical polypropylene plaques with textured grooves of varying dimensions. Both geometry and directionality proved to be major frictional contributors; as groove size increased, finger friction in the longitudinal direction decreased, but friction increased laterally. In addition to testing a fingerpad, friction was measured with a silicone wand to simulate a finger with different material properties. The silicone exhibited the opposite trend as skin; as groove width decreased, frictional forces increased longitudinally and decreased laterally. While topography affects frictional behavior, counterface stiffness, and intrinsic material properties may cause the trend shift between skin and silicone.
532

Grain Size Refinement in AZ31 Magnesium Alloy by Friction Stir Processing

Chang, Chih-yi 09 July 2004 (has links)
This book has the introduction of the friction stir welding and friction stir processing, and introduces the newest development in FSW.Finding out the appropriate paraments of the grain size refinement in AZ31 Mg. The relationship between the resulting grain size and the applied working strain rate and temperature for the friction stir processing in AZ31 Mg is systemically examined. The Zener-Holloman parameter is utilized in rationalizing the relationship. The grain orientation distribution is also studied using the X-ray diffraction.
533

none

Chuang, Chia-hao 21 July 2005 (has links)
The friction stir processing is applied in mixing elemental thin sheets of Mg, Al, and Zn in various portions to result in hard intermetallic alloys with Vicker¡¦s hardness in excess of 350. The Mg3Al2Zn3
534

Fabrication of High Strength Al-Cu-Ti Alloys by Friction Stir Processing

Lo, Chu-Chun 22 July 2005 (has links)
None
535

Experiment Studies of Acting Force and Stirring Energy in Friction Stir Welding Process

Lin, Yao-Long 27 July 2006 (has links)
In this study, the fundamental mechanism of friction stir welding was investigated to establish the relationship among the three components of the forces acting on the work pieces, the variation of the stirring energy, and the joint characteristics of the materials. A dynamometer designed by Chiou et al., was used to measure the axial force (z-direction), the feed force (x-direction), and the clamping force (y-direction). The output energy of servo motor was monitored by power meter. Experimental results show that with increasing welding speed, the feed force increases obviously, the axial force increases slightly, and the energy almost remains constant for the fixed rotation speed of the spindle. At the rotation speed of spindle of 800 rpm, the spindle angle of 1¢X, the pre-clamping force of 2kN and the welding speed of 60 mm/min, results show that the feed force is about 1kN when the probe is plunged into the specimens but the shoulder does not be in contact with the surface of the specimen. However, when the probe is plunges into the specimens entirely and the shoulder is in contact with the surface slightly, the feed force is reduced to 0.48kN. Moreover, when the shoulder is in contact with the surface heavily, the feed force is reduced to 0.2kN. This result indicates that the contact force between the shoulder and the specimen causes the material to become soft and to backfill into the weld, and then decreases the feed force. After the specimen of the 6061-T6 aluminum has been welding, the micro hardness measurements are made. Results show that the distribution of the hardness is quite consistent along the welding as the feed force approaches to 0.2kN. Furthermore, the appearance on the surface of the weld is quite fine, and thereby it is able to get the high and uniform quality. The spacing distance of the weld surface can be theoretically analyzed. It is found that the spacing distance increases with welding speed and decreases with rotation speed of spindle. The theoretical predictions are in very good agreement with the experimental measurements.
536

Microstructure and Mechanical Properties of Al-10at%Fe Alloy Subjected to Friction Stir Processing

Lee, I-shan 07 August 2006 (has links)
In this study, billet of a binary Al-10at%Fe alloy was prepared from pure Al and Fe powders by the use of conventional press and sinter route. The sintered billet was then subjected to multiple passages of friction stir processing (FSP). After FSP, the structure of a binary Al-10at%Fe alloy can be refined to sub-micrometer scale. Transmission electron microscopy (TEM) showed that particles of Fe-containing phase were distributed uniformly in the aluminum matrix, and the mean size of these second phase particles was about 100nm. From the results of X-ray diffraction and energy dispersive spectroscopy (EDS), the Al-Fe second phase was identified as Al13Fe4. We also observed obvious reaction zone around iron particles in the friction-stirred zone. Apparently, a rapid in-situ reaction between Al and Fe had occurred in FSP. In order to reduce the reaction time and the heat input, the higher traversing speed was used. In addition, a higher sintering temperature was used to promote Al-Fe reaction. Furthermore, micro-hardness, tensile and compressive tests were performed to evaluate the mechanical properties of the Al-10at%Fe alloy fabricated by FSP.
537

A Micro-Model Based Linear Motor Sub-micron and Fast Positioning Controller

Wang, Chuang-Lin 12 September 2002 (has links)
In position control systems like linear motor, friction is a key factor to influence the control performance when micron or sub-micron meter accuracy is required. To overcome the effect of the friction, besides a general model of the linear motor system, past researches have shown an additional static friction model of the system is necessary for a better control performance when the motor move into the micro region of the system (usually <100£gm). Two models, macro and micro model of the system have been well constructed by two different identification methods. After model construction, two different controllers are also designed for each model. A traditional pole-placement PID controller can be easily obtained for the macro model to move into the micro region quickly and stably. Then in micro model design, from the experiments, it is found that system parameter varies and thus degrades the positioning performance of the system. So, a Sliding-Mode Controller is designed to improve these problems. With a two step control strategy, macro and micro step, the linear motor positioning system can achieve a 0.1£gm accuracy within 0.2 sec.
538

Micro- and nano- scale experimental approach to surface engineer metals

Asthana, Pranay 17 September 2007 (has links)
This thesis includes two parts. The first part reviews the history and fundamentals of surface science and tribology. The second part presents the major research outcomes and contributions. This research explores the aspects of friction, wear, and surface modification for tribological augmentation of surfaces. An effort has been made to study these aspects through gaining insights by fundamental studies leading to specific practical applications in railroads. The basic idea was to surface engineer metals for enhanced surface properties. A micro- and nano- scale experimental approach has been used to achieve these objectives. Novel principles of nano technology are incorporated into the experiments. Friction has the potential to generate sufficient energy to cause surface reactions through high flash temperatures at the interface of two materials moving in relative motion. This allows surface modifications which can be tailored to be tribologically beneficial through a controlled process. The present work developed a novel methodology to generate a functional tribofilm that has combined properties of high hardness and high wear resistance. A novel methodology was implemented to distinguish sliding/rolling contact modes during experiments. Using this method, a super hard high-performance functional tribofilm with “regenerative” properties was formed. The main instrument used in this research for laboratory experiments is a tribometer, using which friction, wear and phase transformation characteristics of railroad tribo-pairs have been experimentally studied. A variety of material characterization techniques have been used to study these characteristics at both micro and nano scale. Various characterization tools used include profilometer, scanning electron microscope, transmission electron microscope, atomic force microscope, X-ray diffractometer, nanoindenter, and X-ray photon spectroscope. The regenerative tribofilms promise exciting applications in areas like gas turbines, automotive industry, compressors, and heavy industrial equipment. The outcome of this technology will be an economical and more productive utilization of resources, and a higher end performance.
539

Studies on metal jointing mechanism in friction stir welding

Zheng, Yu-zhe 23 March 2009 (has links)
To investigate the fundamental mechanism of friction stir welding to form a butt joint, two additional tests are performed, one using the rotating probe pin only, the other using the rotating shoulder only. In the first case, the pin tool is plunged into the joint interface, but the shoulder is not in contact with the workpiece. When the pin tool is feeding, the material in the vicinity of the pin tool is scratched and piled on the retreating side, but a butt joint is not formed by this test on two thin plates of aluminum alloy 6061-T6. In the second case, when the shoulder is feeding, the plastic shear deformation of the material in the vicinity of the shoulder can be observed and then it is joined together due to the heat generated from the shoulder to cause the material diffusion. According to these additional experiments and the friction stir welding process, the mechanism to form a butt joint is as following. When the probe plunge into the material and the shoulder is in contact with the workpiece, a large amount of frictional heat is generated from the shoulder and the pin. When the tool moves forward, the soft material in front of the pin is squeezed, so that the material is refilled into the space behind the pin by the rotating pin and shoulder. According to the observation of cross-section of butt joint, an interface curve can be found. This curve is formed by the plastic shear deformation of the material in the vicinity of the shoulder and the pin at high frictional temperature. It can be explained by the boundary layer theory.
540

Guiding ambiphilic molecular alignment using patterned polydimethylsiloxane surfaces

Hsieh, Chiung-wen 27 July 2009 (has links)
Controlling the orientation of liquid crystal molecules in LC displays is extremely important for optimizing device performance. The method most commonly used in industry today involves rubbing the surface of the polymer-coated glass substrates used in the displays with a velvet cloth to create microscopic grooves. Berreman theory states that the liquid crystal molecules then align along the direction of the grooves. Alternatively, some literature shows that the friction caused by rubbing aligns the polymer chains in the surface layer which then attract and align the liquid crystal molecules along the direction of the chains. Even now, it is still unclear exactly how the process of rubbing the surface causes the liquid crystal molecules to align in an orderly manner. This thesis describes a systematic study of the physical and chemical influence of the substrate on the alignment and orientation of liquid crystal molecules. We used Fourier Transform Infrared spectroscopy (FTIR) to identify surface chemistry, contact angle measurements to determine the surface energy, and atomic force microscopy (AFM) to observe the alignment of liquid crystal on the surfaces. In the course of this study, we have gained insight into how the physical and chemical properties of the surface affect the molecular arrangement in the solid-liquid interface. Our results can be applied not only to LCD technology, but more generally to biochips and biosensor devices.

Page generated in 0.0506 seconds