• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1097
  • 436
  • 228
  • 121
  • 81
  • 48
  • 38
  • 37
  • 23
  • 7
  • 6
  • 5
  • 4
  • 3
  • 2
  • Tagged with
  • 2542
  • 456
  • 436
  • 376
  • 341
  • 315
  • 298
  • 295
  • 224
  • 215
  • 205
  • 202
  • 187
  • 184
  • 172
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
601

Improving the performance of internal combustion engines through lubricant engineering

Taylor, Oliver January 2016 (has links)
Low friction lubricant development provides a worthwhile contribution to vehicle CO<sub>2</sub> emission reduction. Conventional low friction lubricant development focuses on empirical processes using out dated engine technology and old test methods. This strategy is inefficient and restricts the lubricant's potential. A new method proposed in the present research combines tribological simulations with rig, engine and vehicle tests. This approach provides insights undocumented until now. The contribution to CO<sub>2</sub> emission reduction from individual engine components on vehicle drive cycles that include warm-up is predicted using lubricants down to the new SAE 8 viscosity grade. A bearing model is used to design the lubricant's non Newtonian characteristics to achieve friction reduction. An isoviscous lubricant with a viscosity of 4.6 cSt is shown to achieve the minimum friction in the bearing. The research shows that by starting with lubricants having kinematic viscosities higher than this value, it is possible to improve lubricant performance by lowering viscosity index (VI), introducing shear thinning, or reducing the density and pressure viscosity coefficient. Conversely, for lubricants with lower starting viscosities it is shown that higher VI values, more shear-stable lubricants and higher densities and pressure viscosity coefficients are required. The model predicts that high oil film pressures occur in the bearing and cause significant local lubricant viscosity increase (300&percnt;), indicating that the lubricant's pressure viscosity behaviour is important here, despite the contact being conformal. Simulation and motored engine testing establishes lubricant behaviour in the piston-to-bore conjunction. This analysis identifies a poor correlation between measured and predicted values at low engine speeds. A rig-on-liner tribometer shows that this error is attributable to a deficiency in the simulation's characterisation of boundary regime friction. An oil pump test determines how a modern variable displacement oil pump (and its control system) responds to lowering viscosity. The hypothesis that low viscosity lubricants cause the parasitic load from this component to increase is disproven using this component-level rig test. Chassis dynamometer testing compares the CO<sub>2</sub> reduction performance of lubricant thermal management systems to the values achieved by reducing the viscosity grade. CO<sub>2</sub> reductions of between 0.4&percnt; and 1.0&percnt; are identified using a cold-start new European drive cycle (NEDC) with a 5W-30 preheated to 60&deg;C and 90&deg;C respectively. Reductions in CO<sub>2</sub> emissions between 0.4&percnt; and 1.2&percnt; are found on the NEDC by lowering the oil fill volume from 5.1 L to 2.1 L. For the unmodified case, a 3.7&percnt; reduction in CO<sub>2</sub> emissions is reported by reducing the viscosity grade from a 5W 30 to an SAE 8 in the NEDC. The performance of a novel external oil reservoir is simulated to understand its ability to retain oil temperature during the vehicle cool-down procedure. An oil temperature of 65&deg;C at the end of the soak period (following a prior test where the oil was assumed to reach 90&deg;C) is predicted by installing insulation to the reservoir and indicates that a viable method to achieve the CO<sub>2</sub> benefits identified through lubricant preheating tests exists. A full vehicle model combines the outputs from each of these sub-models to predict lubricant performance on the NEDC the new World-wide harmonized light duty test cycle (WLTC). This new approach provides a tool that enables next generation low friction lubricants to be developed. The model predicts that an SAE 8 lubricant can reduce CO2 emissions by 2.8&percnt; on the NEDC and 1.9&percnt; on the WLTC compared to a 5W-30. A theoretical experiment, where all lubricant related friction was deleted from the simulation, predicts that lubricant-related CO<sub>2</sub> emissions are 8.7&percnt; on the NEDC and reduce to 6.3&percnt; on the WLTC. These results indicate that the planned adoption of the WLTC in September 2017 reduces the potential contribution to CO<sub>2</sub> emission reduction from lubricants by 28&percnt;.
602

Manipulating graphene's lattice to create pseudovector potentials, discover anomalous friction, and measure strain dependent thermal conductivity

Kitt, Alexander 22 January 2016 (has links)
Graphene is a single atomic sheet of graphite that exhibits a diverse range of unique properties. The electrons in intrinsic graphene behave like relativistic Dirac fermions; graphene has a record high Young's modulus but extremely low bending rigidity; and suspended graphene exhibits very high thermal conductivity. These properties are made more intriguing because with a thickness of only a single atomic layer, graphene is both especially affected by its environment and readily manipulated. In this dissertation the interaction between graphene and its environment as well as the exciting new physics realized by manipulating graphene's lattice are investigated. Lattice manipulations in the form of strain cause alterations in graphene's electrical dispersion mathematically analogous to the vector potential associated with a magnetic field. We complete the standard description of the strain-induced vector potential by explicitly including the lattice deformations and find new, leading order terms. Additionally, a strain engineered device with large, localized, plasmonically enhanced pseudomagnetic fields is proposed to couple light to pseudomagnetic fields. Accurate strain engineering requires a complete understanding of the interactions between a two dimensional material and its environment, particularly the adhesion and friction between graphene and its supporting substrate. We measure the load dependent sliding friction between mono-, bi-, and trilayer graphene and the commonly used silicon dioxide substrate by analyzing Raman spectra of circular, graphene sealed microchambers under variable external pressure. We find that the sliding friction for trilayer graphene behaves normally, scaling with the applied load, whereas the friction for monolayer and bilayer graphene is anomalous, scaling with the inverse of the strain in the graphene. Both strain and graphene's environment are expected to affect the quadratically dispersed out of plane acoustic phonon. Although this phonon is believed to provide the majority of graphene's very high thermal conductivity, its contributions have never been isolated. By measuring strain and pressure dependent thermal conductivity, we gain insight into the mechanism of graphene's thermal transport.
603

The physics of the flow of concentrated suspensions

Guy, Ben Michael January 2017 (has links)
A particulate suspension under shear is a classic example of a system driven out of equilibrium. While it is possible to predict the equilibrium phase behaviour of a quiescent suspension, linking microscopic details to bulk properties under flow remains an open challenge. Our current understanding of sheared suspensions is restricted to two disparate regimes, the colloidal regime, for particle sizes d < 1 μm and the granular regime, for d > 50 μm. The physics of the industrially-relevant intermediate size regime, 1 μm ≲ d ≲ 50 μm, is unclear and has not been explored previously. In this thesis, we use conventional rheometry on a range of model spheres to develop the foundations of a predictive understanding of suspension flow across the entire size spectrum. In the first part of the thesis, we show that in repulsive particulate systems the rheology is characterised by two viscosity "branches" diverging at different volume fractions φRCP and φm, which represent states of flow with lubricated (frictionless) and frictional interactions between particles. In the intermediate size regime, there is a transition between these two branches above a critical onset stress σ* which manifests as shear thickening. This σ* is related to a barrier (invariably due to the charge or steric stabilisation) keeping particle surfaces apart. Our data are quantitatively fit by the Wyart and Cates theory for frictional thickening [1] if we assume that probability distribution of forces in the system is similar to in dry granular media. The onset stress for shear thickening is found to decrease with the inverse square of the particle size σ* / d ̄ 2 for diverse systems. We show that it is the competition between the scaling of σ*(d) and the size dependence of the entropic stress scale (~ d ̄ 3) that controls the crossover from colloidal to granular rheology with increasing size. Granular systems are "always shear thickened" under typical experimental conditions, while colloidal systems are always in a frictionless state. In the second part of the thesis, we explore the validity of the frictional framework for shear thickening. Although it quantitatively predicts our steady-state rheology, the frictional framework contradicts traditional fluid-mechanical thinking and has yet to be rigorously tested experimentally. In fact, there is a large body of literature that attributes thickening to purely hydrodynamic effects. Using dimensional analysis and simple physical arguments we examine possible physical origins for thickening and show that previously-proposed mechanisms can be subdivided into three types: two-particle hydrodynamic thickening, many-particle hydrodynamic thickening ("hydroclusters") and frictional-contact driven thickening. Many of these mechanisms can are inconsistent with the experimental two-branch phenomenology and can be disregarded. We further narrow down possible causes of thickening using the technique of flow reversal, which disentangles the relative contributions of contact and hydrodynamic forces to the viscosity. Consistent with recent simulations [2] and theory [1], we find that in each case thickening is dominated by the formation of frictional contacts and that hydrodynamic thickening, if present, is subdominant.
604

Avaliação do coeficiente de atrito em um dinamômetro em escala reduzida

Kruze, Gabriel Aquino Schell January 2009 (has links)
Neste trabalho foi realizada a seleção da espessura do disco a ser utilizada em um dinamômetro em escala reduzida, chamado Dinamômetro em Escala da Fras-le, a partir de quatro espessuras de disco ensaiadas conforme o procedimento de ensaio chamado de caracterização térmica. A seleção da espessura do disco foi realizada através da comparação dos resultados dos comportamentos térmicos dos discos de diferentes espessuras, ensaiados conforme o ensaio de caracterização térmica, com os resultados de quatro sistemas de freio, ensaiados em dinamômetros convencionais com o mesmo procedimento de ensaio. Os coeficientes de atrito médio por frenagem obtidos no ensaio de caracterização térmica do dinamômetro em escala reduzida e dos quatro sistemas de freio também foram comparados de modo a comprovar que a espessura de disco escolhida foi realmente adequada para este procedimento de ensaio. Esta comparação foi realizada através de três métodos: coeficiente de correlação de Pearson, comparação qualitativa e comparação quantitativa. Após a comparação foi comprovado que o Dinamômetro em Escala da Fras-le reproduz o comportamento do coeficiente de atrito médio por frenagem dos quatros sistemas com o ensaio de caracterização térmica para um material de fricção orgânico. / In this work, a disc thickness for a reduced-scale dynamometer called Fras-le Scale Dynamometer was selected by testing four disc thicknesses with the thermal characterization test procedure. The disc thickness selection was done by comparison of the different thick-disc thermal behavior tested with the thermal characterization procedure, with the results of four brake systems tested with the same procedure in full-scale dynamometers. The mean friction coefficients by braking obtained in the thermal characterization test of the reduced-scale dynamometer and of the four brake systems were also compared to prove that the selected disc-thick is adequate for this test procedure. This comparison was done by three methods: Pearson correlation coefficient, qualitative comparison and quantitative comparison. After this comparison it was verified that the Fras-le Scale Dynamometer can reproduce the behavior of the mean friction coefficient by braking of the four systems with the thermal characterization test for an organic friction material.
605

DESIGN AND OPTIMIZATION OF LOW-Cu AND Cu-FREE AUTOMOTIVE BRAKE FRICTION MATERIALS

Lee, Poh Wah 01 August 2013 (has links)
The purpose of this research was to generate the knowledge for formulating low-Cu and Cu-free brake friction materials without using and releasing hazardous materials that are listed on Washington State and California State Senate Bills. Model brake material samples were manufactured and tested in the Friction Assessment and Screening Test (FAST) and the full scale automotive brake dynamometer (Dyno) using a SAE J2430 test procedure. The SAE recommended a J2430 test procedure which provided the necessary data for the Brake Effectiveness Evaluation Procedure (BEEP) by the Brake Manufacturers' Council. The newly developed low-Cu and Cu-free brake friction materials were formulated by modifying a typical Non Asbestos Organic (NAO) (T-Baseline) formulation and a typical Semi-Metallic (M-Baseline) formulation. The NAO Cu-free brake friction materials contain geopolymer and natural hemp fibers as a partial replacement of phenolic resin and synthetic Kevlar fibers, respectively. Friction performance and wear data from a series of FAST tests were used to train an artificial neural network, which was used to optimize the NAO Cu-free formulations. Then, the optimized low-Cu and Cu-free brake friction materials were tested on the Dyno. Dyno test results showed that all NAO Cu-free brake friction materials have passed the Brake Effectiveness Evaluation Procedure (BEEP), did not exhibit thermal fade when temperature was increased and were slightly sensitive to speed. The NAO Cu-free brake friction materials exhibits slightly lower average friction level when compared to the baseline materials (T-Baseline). The Cu-free brake friction materials, as well as the rotors, exhibit higher wear than the detected wear on the T-Baseline material. The semi-metallic low-Cu and Cu-free brake friction materials have also passed the BEEP. Dyno test results indicated that the semi-metallic low-Cu and Cu-free friction materials did not exhibit thermal fade and were slightly sensitive to speed. The semi-metallic low-Cu and Cu-free materials exhibited lower friction level and higher wear on the pads when compared to the M-Baseline material. The semi-metallic Cu-free material outperformed the M-Baseline material in term of rotor wear. Analyses using scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) microanalysis on the tested materials show that the friction surface of the T-baseline material was covered with fully developed and stable friction layer (third body) consisting mostly of Fe-oxides, different forms of carbon and compounds of materials originally present in the bulk material. The NAO Cu-free materials (T30-15 and T30-16) did not develop a sufficient friction layer. The friction layer seemed to be responsible for the detected lower wear in the T-Baseline compared to the NAO Cu-free materials (T30-15 and T30-16), and it acted as a solid lubricant on the interface between the rubbing pad and the cast iron rotor lowering the adhesive forces. The friction and wear of the T-Baseline material was controlled by adhesive mechanisms. The NAO Cu-free materials (T30-15 and T30-16) with content of geopolymer replacing phenolic resin matrix exhibited extensive abrasive wear in addition to adhesive mechanisms. The capacity to form a friction layer on the surface plays a considerable role when lowering the wear of NAO brake friction materials. The friction layer was formed by compaction and interaction of brake wear particles, and its stability and character depend on the chemistry of the bulk materials in contact as well as the temperature, pressure and sliding speed during a friction process. SEM and EDX analyses also showed that the semi-metallic pads have developed friction layer on the friction surfaces. The difference was that the M-Baseline material had well developed friction layer, but the Low-Cu (M4) and Cu-free (M5) materials, had many smaller patches of friction layer disturbed on the surfaces.
606

Frictional Properties of Carbon-Carbon Composites and Their Relation to Fiber Architecture and Microstructure

Lim, Wei Jun 01 December 2016 (has links)
The use of carbon-carbon (C/C) composites for clutch application requires a basic understanding of the structural characteristics of the composites that control their frictional and engineering properties. These are related to the microstructure of the matrix and fiber architecture, with the character of fiber/matrix interface and type of defects, porosity and microcracks being the most relevant. The purpose of this study is to examine and characterize the relation between the fiber architecture of selected C/C composites and its relation to their frictional properties when subjected to different normal forces and relative humidity. Friction tests is conducted using a Brüker Universal Friction Tester (UFT). This study also seeks to characterize and analyze the microstructure and fiber architecture through Polarized Light Microscopy, X-Ray Diffraction and Ultrasound Scans. This study shows that the Coefficient of Friction (COF) at constant normal force and RPM are always slightly lower for the samples with surface fibers orientated at 45° relative to the direction of rotation compared to samples with surface fibers orientated 0/90° at 50% relative humidity. The percent difference ranges from 1.62% to 15.30%. However, at 85% relative humidity, the average COF at the constant normal force and RPM are always slightly higher for the 45° compared to 0/90° samples for Rotor samples, while in contrast the average COF are always lower for the 45° samples compared to 0/90° samples for Stator samples. The percent difference ranges from 3.14% to 35.46%. This study found significant differences between the 0/90° samples and the 45° samples. There is indication that the fiber orientation can cause differences between frictional properties even if the clutches are made from the same material. The change in humidity also significantly changes the resulting COF.
607

Avaliação das variações na força de atrito de materiais de fricção utilizando um tribômetro

Moraes, Tiago Roberto Borges de January 2016 (has links)
A demanda crescente por veículos mais confortáveis e mais seguros apresenta desafios à indústria. Os freios são um dos mais importantes sistemas de segurança dos veículos e também são frequentemente objeto de reclamações de consumidores por motivo de ruído. Os materiais de atrito empregados nos sistemas de freio devem apresentar desempenho satisfatório sob diferentes condições de temperatura e umidade, possuindo resistência à corrosão, longa vida útil, baixo custo e produzindo baixos níveis de ruído. Com o objetivo de caracterizar diferentes materiais quanto ao coeficiente de atrito e à produção de ruído, foram realizados ensaios de frenagem em diferentes condições utilizando um tribômetro. Esse equipamento possui sistemas de medição e controle capazes de registrar os coeficientes de atrito a cada frenagem simulada. O tribômetro também foi instrumentado com uma célula de carga capaz de medir variações da força de atrito. Os ensaios foram realizados em diferentes condições de temperatura e de intervalos de tempo entre as frenagens, alternando etapas quentes e frias. Durante o assentamento dos materiais, foram verificados diferentes comportamentos do coeficiente de atrito. Os materiais ensaiados apresentaram sensibilidade às variações de temperatura e de intervalos de tempo entre frenagens. Foi observada correlação entre as variações da força de atrito e o coeficiente de atrito. Também foram evidenciados os efeitos da velocidade de deslizamento sobre o espectro de frequências de variação da força de atrito. / The growing demand for more comfortable and safer vehicles comes up with new challenges to the industry. The brakes are one of the most important vehicle safety systems and are also often the subject of customer complaints about noise. The brake friction materials need to perform properly under different conditions of temperature and humidity, presenting resistance to corrosion, long life, low cost and producing low noise levels. In order to characterize the friction coefficient and noise generation of different friction materials, different conditions were tested using a tribometer. This equipment has measurement and control systems capable of record each brake stop friction coefficient. The tribometer was also instrumented with a load cell capable of measuring friction force variations. The tests were performed at different temperatures and time intervals between brake applications, alternating hot and cold stages. During the materials running-in, different behaviors of the friction coefficients were found. The friction materials tested showed sensitivity to temperature variations and time intervals between brake applications. There was a correlation between friction force variations and coefficient of friction. There were also effects of the slip speed on the frequency spectrum of the frictional force variations.
608

Projeto e construção de um tribômetro com controle independente da temperatura do disco

Neis, Patric Daniel January 2012 (has links)
A presente tese descreve as etapas de desenvolvimento de um equipamento (tribômetro) e metodologia de ensaio para caracterização do efeito isolado da temperatura sobre o atrito medido em materiais de fricção utilizados em freios veiculares. O projeto deste equipamento foi baseado nas funcionalidades e limitações encontradas nas principais máquinas e procedimentos de ensaio para freios automotivos. São apresentados e discutidos detalhes do projeto mecânico e de automação do tribômetro, bem como são levantadas suas incertezas de medição instrumentais e precisão. Além disso, é proposta uma nova metodologia de ensaio para caracterização do efeito isolado da temperatura sobre os resultados de atrito obtidos durante os testes. O projeto mecânico atual do tribômetro contempla recursos que contribuem para facilitar a operacionalidade do equipamento e, consequentemente, reduzir o tempo envolvido na etapa de preparação dos testes. São exemplos destes recursos um mecanismo de fuso e manivela, o qual é empregado para a regulagem do raio de deslizamento, e um dispositivo para troca rápida da amostra a partir do ajuste de um único parafuso. O atual projeto de automação do tribômetro é composto por circuitos de controle da carga, rotação, torque e temperatura, os quais operam em malha fechada. A incerteza instrumental do sistema de medição de atrito do tribômetro é igual a ±2,9% do valor nominal medido, considerando a faixa típica de aplicação da máquina. Em termos de precisão, verificou-se experimentalmente que o equipamento projetado apresenta uma repetitividade de ±0,013. O projeto de automação também contemplou a ligação do tribômetro a um aquecedor indutivo. O uso da referida tecnologia em conjunto com a metodologia de ensaio proposta na presente tese mostraram-se capazes de caracterizar de forma acelerada e independente o efeito da temperatura sobre o coeficiente de atrito obtido a partir de ensaios de frenagem executados no tribômetro. Complementa o estudo ainda o desenvolvimento de uma técnica para pós-processamento dos dados relativos aos ensaios executados no tribômetro segundo a metodologia proposta. A referida técnica mostrou-se uma maneira eficiente e relativamente simples de avaliar os efeitos simultâneos da carga e da temperatura sobre o atrito. / The current thesis describes the development of equipment (tribometer) and testing procedure for characterizing the isolated effect of temperature on friction measurements obtained from vehicular friction materials. The design of this equipment was based on the features and limitations found in the main machinery and testing procedures for brakes. Details about the mechanical design and automation of the tribometer are presented as well as its instrumental measurement uncertainties and precision. Besides, a new testing procedure is proposed in order to characterize the isolated effect of temperature on friction results obtained in the tests. The current mechanical design of the tribometer comprises some features that contribute to make the equipment operation ease and thus reduce its setup time. A crank and screw mechanism, which is used for adjusting the sliding radius, and a device for rapid exchange of the samples by means of a single screw are both examples of those features. The current automation design of the tribometer consists of circuits for controlling load, speed, torque and temperature, which operate in closed loop mode. The instrumental measurement uncertainty from the friction measuring system is ±2,9% of the nominal friction measurement, considering the typical operating range of the machine. Experimental tests performed on the tribometer showed that the repeatability (precision) of the friction measurements is ±0,013. The automation design also included the connection between the tribometer and an induction heater. The use of this technology together with the proposed testing procedure proved to be a suitable tool for characterizing the isolated effect of temperature on friction during braking tests performed on the tribometer. This work is also complemented by the development of a technique for post-processing the data related to the tests carried out in accordance with the proposed testing procedure for the tribometer. This technique proved to be an efficient and clear way to assess the simultaneous effects of load and temperature on friction measurements.
609

Avaliação do coeficiente de atrito em um dinamômetro em escala reduzida

Kruze, Gabriel Aquino Schell January 2009 (has links)
Neste trabalho foi realizada a seleção da espessura do disco a ser utilizada em um dinamômetro em escala reduzida, chamado Dinamômetro em Escala da Fras-le, a partir de quatro espessuras de disco ensaiadas conforme o procedimento de ensaio chamado de caracterização térmica. A seleção da espessura do disco foi realizada através da comparação dos resultados dos comportamentos térmicos dos discos de diferentes espessuras, ensaiados conforme o ensaio de caracterização térmica, com os resultados de quatro sistemas de freio, ensaiados em dinamômetros convencionais com o mesmo procedimento de ensaio. Os coeficientes de atrito médio por frenagem obtidos no ensaio de caracterização térmica do dinamômetro em escala reduzida e dos quatro sistemas de freio também foram comparados de modo a comprovar que a espessura de disco escolhida foi realmente adequada para este procedimento de ensaio. Esta comparação foi realizada através de três métodos: coeficiente de correlação de Pearson, comparação qualitativa e comparação quantitativa. Após a comparação foi comprovado que o Dinamômetro em Escala da Fras-le reproduz o comportamento do coeficiente de atrito médio por frenagem dos quatros sistemas com o ensaio de caracterização térmica para um material de fricção orgânico. / In this work, a disc thickness for a reduced-scale dynamometer called Fras-le Scale Dynamometer was selected by testing four disc thicknesses with the thermal characterization test procedure. The disc thickness selection was done by comparison of the different thick-disc thermal behavior tested with the thermal characterization procedure, with the results of four brake systems tested with the same procedure in full-scale dynamometers. The mean friction coefficients by braking obtained in the thermal characterization test of the reduced-scale dynamometer and of the four brake systems were also compared to prove that the selected disc-thick is adequate for this test procedure. This comparison was done by three methods: Pearson correlation coefficient, qualitative comparison and quantitative comparison. After this comparison it was verified that the Fras-le Scale Dynamometer can reproduce the behavior of the mean friction coefficient by braking of the four systems with the thermal characterization test for an organic friction material.
610

Extension de la technique de perçage vibratoire à des matériaux difficiles à usiner et au domaine du décolletage / Extension of the art drilling vibration to materials which are difficult to machine and the field of cutting

Onder, Olcay 17 October 2011 (has links)
Contexte de travail Le travail de thèse se déroulera en collaboration entre le CTDEC et le laboratoire GSCOP de Grenoble sous la responsabilité scientifique de Henri PARIS. Le travail de thèse sera co-dirigé opar Joël RECH (MdCf) du laboratoire LTDS en poste à l'ENI de Saint-Etienne. Le travail de thèse s'inscrit dans le cadre d'un projet dénommé FGVV (Forage à Grande Vitesse Vibratoire) soutenu par le FCE (pôles de compétitivité VIAMECA et ARVES INDUSTRIES). Objectifs industriels et scientifiques Ce projet FGVV vise essentiellement à maîtriser et à industrialiser la technologie dite de « forage vibratoire ». Cette technologie permet de réaliser des trous de très grandes profondeurs grâce à une vibration axiale du foret conduisant à une fine fragmentation des copeaux qui s'évacuent alors naturellement sans aucune difficulté. Le projet fait suite à plusieurs années de travaux scientifiques et technologiques, qui ont montré la viabilité technique et économique de ce procédé. L'objectif de cette thèse est d'étendre l'utilisation de cette technologie à des applications concernant des diamètres plus petits et sur des matériaux plus difficile à usiner. Le domaine du décolletage est souvent confronter à des perçages de petit diamètre, voire très petit diamètre (<1mm) dans des matériaux difficile à usiner (acier inox, titane, …). Dans ces applications, l'incidence de l'âme du foret devient importante et les modèles mis en place trouve leurs limites. De plus, les aspects thermiques et tribologiques à l'interface copeau outil ne sont pas simples à maîtriser et génèrent un amortissement qui peut être préjudiciable au bon fonctionnement de la tête de perçage vibratoire. Il s'agit, dans un premier temps, à l'aide de résultats expérimentaux d'identifier les phénomènes liés à coupe de ces matériaux qui sont les plus influents sur le comportement dynamique de la tête de perçage vibratoire. Dans un deuxième temps, cette caractérisation devrait permettre de mettre en place des modèles permettant de prédire le comportement et ainsi d'identifier des points de fonctionnement intéressants. Ces modèles seront alors intégrés dans un outil de simulation permettant de prédire le fractionnement du copeau et plus largement le comportement du système composé de la tête de perçage vibratoire, du foret et de la pièce. Dans un troisième temps, l'extension vers les très petits diamètres nécessite une bonne compréhension et un modélisation de l'amortissement issu de l'âme du foret qui devient prépondérant est nécessaire. Enfin, une optimisation des paramètres autour des points de fonctionnement identifiés permettra de répondre au mieux aux contraintes de productivité. Une re conception de la tête, intégrant ces nouvelles connaissances, est alors prévue pour répondre au mieux aux applications industrielles. Les modèles mis en place devraient aussi permettre une extension vers les applications sur des pièces en alliages d'aluminium moulées car les phénomènes de collage du copeau et son l'incidence sur la comportement dynamique de la tête de perçage vibratoire sont aussi présent sur ce type de matériau. / Background work The thesis work is conducted in collaboration between the laboratory and CTDEC GSCOP Grenoble in the scientific responsibility of Henri PARIS. This thesis will be co-directed by Joël RECH (MdCf) laboratory LTDS stationed in ENI Saint-Etienne. This thesis is part of a project called FGVV (Forage Vibratoire a Grande Vitesse) supported by the CFE (competitiveness clusters VIAMECA and ARVES INDUSTRIES). Objectives industrial and scientific This project focuses FGVV control and industrialize a technology called "drilling vibration." This technology can make holes very deep thanks to an axial vibration of drills leading to fragmentation of a thin shavings which go out then naturally without any difficulty. The project follows several years of scientific and technological work, which demonstrated the technical and economic viability of this process. The objective of this thesis is to extend the use of this technology in applications involving smaller diameters and materials more difficult to machine. The field of cutting is often confronted with small-diameter holes, even very small diameter (<1 mm) in materials difficult to machine (stainless steel, titanium,…). In these applications, the impact of the soul of drills becomes important and models introduced found their limits. In addition, thermal and tribological aspects to the interface chip tool are not easy to control and generate an amortization, which may adversely affect the proper functioning of the head of drilling vibration. In a first step, using experimental results to identify phenomena related to cutting of these materials which are most influential on the dynamic behavior of the head of drilling vibration. In a second time, this characterization is expected to introduce models to predict the behaviour and identify points of operation interesting. These models are then integrated into a simulation tool to predict splitting chip and more broadly the behaviour of the system composed of the head drilling vibration, and the drill room. In a third time, extending to the very small diameters requires a good understanding and modeling of depreciation from the soul of drills that becomes dominant is necessary. Finally, an optimization settings around the operating points identified will best respond to constraints on productivity. A re design of the head, incorporating this new knowledge, is then scheduled to suit the industrial applications. The models put in place should also allow an extension to the applications on parts of aluminum alloy castings as the phenomena of bonding the chip and its impact on the dynamic behavior of the head drilling vibration are also present on this type material.

Page generated in 0.1153 seconds