• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 145
  • 22
  • 21
  • 20
  • 16
  • 8
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 1
  • Tagged with
  • 289
  • 289
  • 75
  • 59
  • 43
  • 38
  • 34
  • 33
  • 33
  • 32
  • 31
  • 31
  • 30
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

LOW EARTH ORBITER TERMINAL (LEO-T)

Harrison, Keith, Blevins, William 10 1900 (has links)
International Telemetering Conference Proceedings / October 27-30, 1997 / Riviera Hotel and Convention Center, Las Vegas, Nevada / The Low Earth Orbit Terminal (LEO-T) developed by AlliedSignal for NASA Wallops is a fully autonomous satellite tracking system which provides a reliable, high quality, satellite data collection and dissemination service. The procurement was initiated by NASA, in an effort to provide more tracking capacity with a decreasing budget. A large mission set of NASA satellites in the next decade will not require the performance of existing large aperture systems. NASA is planning to use the larger aperture antennas to only support those missions needing the higher performance. The remainder of the missions will be supported with the smaller LEO-Ts, which are smaller, significantly less expensive, and fully automated. The procurement is also an attempt at a first step towards fostering commercialization and privatization of small station acquisition and services. The system design features a modular architecture to simplify integration and to support affordable future expansion. This paper begins with a brief summary of the LEO-T program, then provides the design details and capabilities of the LEO-T system.
22

Role of adopting response strategies to manage the Front-End phase of a project. : An exploratory study of the Italian Innovative SMEs.

Abate, Marco, Biei, Massimo January 2016 (has links)
The present study investigates the role of the Front-End phase within the context of Innovative Small and Medium-sized Enterprises through the project management lens, focusing on what practitioners can do to manage this phase. Taking a cue from the assumption that the Front-End phase of a project is a very critical and important stage, this study begins with a literature review on innovation and on its role among the Small and Medium-sized Enterprises, and moves to the identification of the main challengesthat an Innovative Italian Small and Medium Enterprise has to face in the Front-End phase. Particularly, the research focuses on the strategies that a project manager can implement to deal with the fuzzy nature of the Front-End phase, originated by uncertainty, equivocality and complexity. The study has an inductive approach and a cross-sectional time-horizon. A case study strategy has been employed, together with semi-structured interviews as data collection technique, involving six Italian Innovative Small and Medium-sized Enterprises identified through the framework of legal requirements provided by the European Union. Although literature poses on the same level all three elements, results show that there is a general consensus about the main role played by uncertainty. Practitioners identify several strategies to employ in order to deal with uncertainty, while the number of strategies identified to reduce equivocality and complexity is limited. Furthermore, this study identifies a correlation between the size of a company and the type of strategies employed to deal with the fuzziness. The more resource a company allocates on a project, the wider is the range of possible strategies project managers can adapt.
23

Front-End Electronics in calorimetry : from LHC to ILC

De La Taille, C. 25 September 2009 (has links) (PDF)
ce rapport résume les développements réalisés en électronique pour lire le calorimètre à Argon Liquide (LAr) d'ATLAS au LHC puis le R&D effectué dans CALICE pour lire ceux de l'ILC en passant par les circuits développés pour lire les photomultiplicateurs multi-anode (MaPMT) pour OPERA ou pour la luminosité d'ATLAS et qui ont aussi des applications en imagerie médicale. Commencée au début des années 90, le R&D pour la calorimétrie d'ATLAS était extrêmement challenging en termes de vitesse de lecture, tenue aux radiations et précision de mesure. La vitesse élevée a nécessité une nouvelle approche de préamplificateurs de courant plutôt que de charge et la définition du bruit en ENI. Les préamplificateurs ont été développés a Orsay ainsi que les shapers monolithiques, ils sont détaillés dans le chapitre 1 ainsi que les considérations sur le filtrage numérique, qui constituait une nouveauté pour la communauté et qui ne donnait pas les résultas escomptés au début. Le chapitre 2 est consacré au système de calibration, développé et produit par Orsay et dont la performance poussée a nécessité des études approfondies. Le chapitre 3 clôt les études pour ATLAS avec un résumé des mesures qui ont dû être faites sur les 200 000 voies du détecteur pour le comprendre et le modéliser afin d'atteindre partout la précision et l'uniformité meilleures que le pourcent. Ces travaux pour ATLAS se sont achevés en 2004, même si des développements ont été réalisés pour les calorimètres de NA48 et D0 durant cette même période et sur des sujets connexes qui ne sont pas détaillés ici. La prochaine génération de collisionneurs après le LHC nécessitera une nouvelle génération de calorimètres, beaucoup plus granulaires (on parle d' « imaging calorimetry », avec des centaines de millions de canaux) et d'électronique de lecture intégrée dans le détecteur. Les ASICs développés pour cette application dans le cadre de la collaboration « CALICE » sont décrits au chapitre 4. Ils intègrent toutes les fonctions d'amplification, digitisation et lecture intégrée qui ont font de véritables « Systems On Chip » (SoC). Une famille de 3 circuits permet de lire le calorimètre électromagnétique Silicium-Tungstène, les RPCs du calorimètre hadronique digital ou les SiPM du calorimètre hadronique analogique ; très performants et versatiles, ils trouvent de nombreuses applications extérieures Ces circuits ont repris de précédents blocs de chips mis au point dans les années 2000 pour lire les photomultiplicateurs multi-anodes du Target Tracker de l'expérience OPERA puis du luminomètre de l'expérience ATLAS et qui sont décrits au chapitre 5 Ces circuits trouvent une continuation actuelle dans les photodétecteurs intégrés de grandes dimensions, développés pour de futures expériences Neutrino.
24

Front end x-ray beam position monitors at the Canadian Light Source

Smith, Sheldon James 04 October 2006
The development of X-ray Beam Position Monitors (XBPM) used on the Canadian Light Source front ends is described in this thesis, from the design concepts to the practical implementation and commissioning. Surveyed into position to provide a fiducialized point of origin for incoming synchrotron radiation, the primary purpose of the XBPM is to provide a measure of synchrotron beam motion. Currently XBPMs have been installed on three beamlines at the Canadian Light Source, a 2.9 GeV third generation synchrotron radiation source. Two of the XBPMs are comprised of chemical vapour deposition synthetic diamond blades coated with gold and installed on insertion device beamlines, while the third makes use of molybdenum blades for a dipole beamline. By incrementally scanning the blades of the XBPM through the synchrotron beam it is possible to determine the monitors� spatial resolution to beam motion. For the commissioned XBPM a typical spatial resolution of +/- 1 micron of beam motion was achieved; and the thermal power loading capacity has been tested to the 2/5 of maximum value. An independent white beam profiler, comprised of a converter crystal and image acquisition software, was constructed to corroborate the functionality of the XBPM.
25

Study of Time-Interleaved SAR ADC andImplementation of Comparator for High DefinitionVideo ADC in 65nm CMOS Process

Qazi, Sara January 2010 (has links)
The Analog to Digital Converter (ADC) is an inevitable part of video AnalogFront Ends (AFE) found in the electronic displays today. The need to integratemore functionality on a single chip (there by shrinking area), poses great designchallenges in terms of achieving low power and desired accuracy.The thesis initially focuses upon selection of suitable Analog to Digital Converter(ADC) architecture for a high definition video analog front end. SuccessiveApproximation Register (SAR) ADC is the selected architecture as it scales downwith technology, has very less analog part and has minimal power consumption.In second phase a mathematical model of a Time-Interleaved Successive ApproximationRegister (TI-SAR) ADC is developed which emulates the behavior ofSAR ADC in Matlab and the errors that are characteristic of the time interleavedstructure are modeled.In the third phase a behavioral model of TI-SAR ADC having 16 channels and12 bit resolution, is built using the top-down methodology in Cadence simulationtool. All the modules were modeled at behavioral level in Verilog-A. The functionalityof the model is verified by simulation using signal of 30 MHz and clockfrequency of 300 MHz, using a supply voltage of 1.2 V. The desired SNDR (Signalto Noise Distortion ratio) 74 dB is achieved.In the final phase two architectures of comparators are implemented in 65nmtechnology at schematic level. Simulation results show that SNDR of 71 dB isachievable with a minimal power consumption of 169.6 μWper comparator runningat 300 MHz.NyckelordKeywords
26

Front end x-ray beam position monitors at the Canadian Light Source

Smith, Sheldon James 04 October 2006 (has links)
The development of X-ray Beam Position Monitors (XBPM) used on the Canadian Light Source front ends is described in this thesis, from the design concepts to the practical implementation and commissioning. Surveyed into position to provide a fiducialized point of origin for incoming synchrotron radiation, the primary purpose of the XBPM is to provide a measure of synchrotron beam motion. Currently XBPMs have been installed on three beamlines at the Canadian Light Source, a 2.9 GeV third generation synchrotron radiation source. Two of the XBPMs are comprised of chemical vapour deposition synthetic diamond blades coated with gold and installed on insertion device beamlines, while the third makes use of molybdenum blades for a dipole beamline. By incrementally scanning the blades of the XBPM through the synchrotron beam it is possible to determine the monitors� spatial resolution to beam motion. For the commissioned XBPM a typical spatial resolution of +/- 1 micron of beam motion was achieved; and the thermal power loading capacity has been tested to the 2/5 of maximum value. An independent white beam profiler, comprised of a converter crystal and image acquisition software, was constructed to corroborate the functionality of the XBPM.
27

Design of Resonant Current Controller in Full stationary-frame for LCL-based Active Front-end Converter

Hu, Shang-hung 26 July 2010 (has links)
Thanks to development of power semiconductor devices and integrated circuits, active front-end converters with controllability of bidirectional power flow have become popular and viable in industrial applications. This thesis proposes an improved resonant current control for the active front-end converter with LCL filter. The proposed control consists of a band-pass filter tuned at fundamental frequency and various band-rejected filters resonant at harmonic frequencies to provide fundamental current tracking capability as well as enhance harmonic current rejection. Based on this algorithm, the active front-end converter can control dc voltage with unity power factor by sensing converter output current, LCL filter voltage and dc voltage. This approach also conducts harmonic current rejection under distorted line voltage with no phase-locked-loop used, which is the significant advantage in terms of phase lag of frame transformation and computing effort of digital signal processing. Current tracking performance and harmonic rejection capability of the proposed method are verified based on frequency-domain analysis. Computer simulations and experimental results are also implemented to validate effectiveness.
28

Sub-Nyquist Rate Sampling Data Acquisition Systems Based on Compressive Sensing

Chen, Xi 2011 May 1900 (has links)
This dissertation presents the fundamental theory and design procedure of the sub-Nyquist rate sampling receiver front-end that exploits signal sparsity by employing Compressive Sensing (CS) techniques. The CS receiver serves as an Analog-to-Information Conversion (AIC) system that works at sampling rates much lower than the Nyquist rate. The performance of a parallel path CS front-end structure that employs current mode sampling techniques is quantified analytically. Useful and fundamental design guidelines that are unique to CS are provided based on the analytical tools. Simulations with IBM 90nm CMOS process verify the theoretical derivations and the circuit implementations. Based on these results, it is shown that instantaneous receiver signal bandwidth of 1.5 GHz and 44 dB of signal to noise plus distortion ratio (SNDR) are achievable in simulations assuming 0.5 ps clock jitter is present. The ADC and front-end core power consumption is estimated to be 120.8 mW. The front-end is fabricated with IBM 90nm CMOS process, and a BPSK sub-Nyquist rate communication system is realized as a prototype in the testing. A 1.25 GHz reference clock with 4.13 ps jitter variance is employed in the test bench. The signal frequency, phase and amplitude can be correctly reconstructed, and the maximum signal SNR obtained in the testing is 40 dB with single tone input and 30 dB with multi-tones test. The CS system has a better FOM than state-of-art Nyquist rate data acquisition systems taking into account the estimated PLL power.
29

An FIFO Memory Design for Data Exchange Bus and Analog Front-end of Digital Cordless Headset Baseband Controller

Chen, Yi-Wei 24 June 2002 (has links)
Three different chip design topics associated with their respective applications are proposed in this thesis. The first topic is the implementation of an FIFO memory design for 8-to-32 data exchange bus. An FIFO memory architecture is proposed to be utilized in data exchange between processing units which possess non-homogeneous bus widths. Neither arbiter logics nor modules are required in such a design to determine input sequences or output sequences. Hence, the delay is drastically shortened. The second topic is focused on the implementation of an analog front-end of digital cordless headset baseband controller. The integrated analog and digital interface IC provides an interface for analog and digital communication. It converts an analog signal into an 8-bit digital signal, which will be processed by the baseband controller. It also converts an 8-bit digital voice data into an analog voice signal. In addition, a built-in oscillator is included in the design, which provides a global clock signal. The third topic is to carry out an DC/DC converter with a built-in voltage detector. The converter can convert 1.5V input voltage to 2.7V output voltage. A portable system can use only one single battery to power on by this circuit. It also contains a voltage detector to indicate whether the output voltage meets the pre-determined level.
30

A 200-MHz fully-differential CMOS front-end with an on-chip inductor for magnetic resonance imaging

Ayala, Julio Enqrique, II 25 April 2007 (has links)
Recently, there is a growing interest in applying electronic circuit design for biomedical applications, especially in the area of nuclear magnetic resonance (NMR). NMR has been used for many years as a spectroscopy technique for analytical chem- istry. Previous studies have demonstrated the design and fabrication of planar spiral inductors (microcoils) that serve as detectors for nuclear magnetic resonance mi- crospectroscopy. The goal of this research was to analyze, design, and test a prototype integrated sensor, which consisted of a similar microcoil detector with analog components to form a multiple-channel front-end for a magnetic resonance imaging (MRI) system to perform microspectroscopy. The research has succeeded in producing good function- ality for a multiple-channel sensor. The sensor met expectations compared to similar one-channel systems through experiments in channel separation and good signal-to- noise ratios.

Page generated in 0.024 seconds