• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Preparation And Characterization Of Cigss Solar Cells And Pv Module Data Analysis

Shirolikar, Jyoti 01 January 2005 (has links)
In this thesis, multiple activities have been carried out in order to improve the process of CIGSS solar cell fabrication on a 4" x 4" substrate. The process of CIGSS solar cell fabrication at FSEC's PV Materials Lab involves a series of steps that were all carried out manually in the past. A LABVIEW program has been written to carry out automated sputter deposition of Mo back contact, CuGa, In metallic precursors on a soda lime glass substrate using a stepper motor control for better uniformity. Further, selenization/ sulfurization of these precursors was carried out using rapid thermal processing (RTP). CIGS films were sulfurized using chemical bath deposition (CBD). ZnO:Al was deposited on the CIGSS films using RF sputtering. A separate LABVIEW program was written to automate the process of ZnO:Al deposition. Ni/Al contact fingers were deposited on the ZnO:Al layer using the e-beam evaporation technique. Further, in order to test these solar cells in-house, a simple current-voltage (IV) tracer was fabricated using LABVIEW. A quantum efficiency (QE) measurement setup was built with guidance from the National Renewable Energy Laboratory (NREL). Lastly, analysis of data from photovoltaic (PV) modules installed on the FSEC test site has been carried out using a LABVIEW program in order to find out their rate of degradation as time progresses. A 'C' program has also been written as an aid for keeping a daily log of errors in data and for troubleshooting of the same.
2

Engineering the angiotensin II type 1 receptor for structural studies

Thomas, Jennifer Ann January 2015 (has links)
G protein-coupled receptors (GPCRs) are eukaryotic integral membrane proteins that perform transmembrane signal transduction. Due to their pivotal role in a wide range of essential physiological functions GPCRs represent a high proportion of all drug targets. High resolution X-ray structures of GPCRs are however underrepresented in the Protein Data Bank. This is due to their instability in detergent, low expression levels and the presence of misfolded receptors in many heterologous expression systems. The objective of this project was to engineer the angiotensin II type 1 receptor (AT1R), a human GPCR, to make it suitable for structural studies. It was determined that detergentsolubilised AT1R was thermostable with antagonist bound with an apparent Tm of ~45°C, which was sufficiently stable for purification without further thermostabilisation by rational mutagenesis. Two expression systems were then evaluated for large-scale production of AT1R, namely baculovirus-mediated expression in insect cells and mammalian expression in HEK293 cells. Radioligand binding assays showed that only the mammalian system produced sufficient quantities of active AT1R for structural studies. Expression in the mammalian system was further optimised to approximately 6 mg/L. An AT1R-GFP fusion was created to examine membrane localisation using confocal laser scanning microscopy, to assay expression levels, to select highly expressing monoclonal cell lines using fluorescence activated flow cytometry and to develop a fluorescence size-exclusion chromatographybased assay to examine the suitability of 12 different ligands for co-crystallization. AT1R was also engineered to facilitate crystallisation, including C-terminal truncations to remove predicted disordered regions and bacteriophage T4-lysozyme being added to the third intracellular loop to provide additional points of contact for crystallisation, which increased the apparent Tm by approximately 10°C. All modified versions of AT1R were assessed for expression, stability and monodispersity. Additionally a rapid western blotting based assay was developed for the detection of unfolded membrane proteins, which will have wide applicability in the field.
3

Glycoconjugates : synthesis and investigation of carbohydrate-protein interactions

Spjut, Sara January 2010 (has links)
To study the functions of glycoconjugates in biological systems reliable and efficient protocols for glycoconjugate synthesis are needed. To reach this goal we have developed methods for solid-phase synthesis of glycoconjugates that can be monitored with gel-phase 19F spectroscopy using fluorinated linkers, building blocks, and protecting groups. We have developed a new fluorine containing linker suitable for solid-phase synthesis of glycoconjugates. The linker was more acid-labile than similar linkers in order to enable cleavage under mild conditions of the target compound from the linker resin.  A carbamate-based strategy has been applied to attach a spacer carrying an amino group to a fluorinated Wang linker for synthesis of amino-functionalized glycoconjugates using thioglycoside donors with fluorinated protective groups. Cleavage from the solid support was performed with trifluoroacetic acid and subsequent protecting group removal gave the target compound. The terminal amine was conjugated with didecyl squarate and this derivative can be attached to various proteins and solid surfaces carrying primary or secondary amines. To evaluate this methodology we have immobilized glycoconjugates in amino-functionalized microtiter plates and successfully probed them with lectin. In addition, a novel fluorine containing protecting group has been designed, synthesized and evaluated. The protecting group was used for protection of the unreactive 4-OH in a galactose building block that was applied in the synthesis of 6-aminohexyl galabioside and was removed with TBAF in THF. Adenovirus serotype 8 (Ad8), Ad19, and Ad37 cause the severe ocular infection, epidemic keratoconjunctivities (EKC). During infection, the adenoviruses interact with sialic acid containing glycoconjugates on the epithelial cells via fiber structures extending from the viral particles. The virus particle most likely binds to the host cell in a multivalent way by simultaneously using multiple fiber proteins and binding sites. Multivalent sialic acid containing conjugates could efficiently inhibit Ad37 cell attachment and subsequent infection of human corneal epithelial (HCE) cells. Three compact tri- and tetravalent sialic acid conjugates were prepared and evaluated as inhibitors of adenoviral host cell attachment and subsequent infection and all conjugates were potent as anti-adenoviral agents. The conjugates can readily be synthesized from accessible starting materials. A crystal structure of the Ad37 fiber knob protein and the trivalent sialic acid conjugate showed that the three binding sites were all occupied by one sialic acid residue each.

Page generated in 0.0328 seconds