• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 7
  • 2
  • Tagged with
  • 19
  • 16
  • 10
  • 5
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular analysis of insulin signaling mechanisms in Echinococcus multilocularis and their role in the host-parasite interaction in the alveolar echinococcosis / Molekulare Analyse der Insulin-Signalmechanismen in Echinococcus multilocularis und ihre Rolle in der Wirt-Parasiten-Interaktion in der Alveolären Echinokokkose

Konrad, Christian January 2007 (has links) (PDF)
The insulin receptor ortholog EmIR of the fox-tapeworm Echinococcus multilocularis displays significant structural homology to the human insulin receptor (HIR) and has been suggested to be involved in insulin sensing mechanisms of the parasite’s metacestode larval stage. In the present work, the effects of host insulin on Echinococcus metacestode vesicles and the proposed interaction between EmIR and mammalian insulin have been studied using biochemical and cell-biological approaches. Human insulin, exogenously added to in vitro cultivated parasite larvae, (i) significantly stimulated parasite survival and growth, (ii) induced DNA de novo synthesis in Echinococcus, (iii) affected overall protein phosphorylation in the parasite, and (iv) specifically induced the phosphorylation of the parasite’s Erk-like MAP kinase orthologue EmMPK1. These results clearly indicated that Echinococcus metacestode vesicles are able to sense exogenous host insulin which induces a mitogenic response. To investigate whether EmIR mediates these effects, anti-EmIR antibodies were produced and utilized in biochemical assays and immunohistochemical analyses. EmIR was shown to be expressed in the germinal layer of the parasite both on the surface of glycogen storing cells and undifferentiated germinal cells. Upon addition of exogenous insulin to metacestode vesicles, the phosphorylation of EmIR was significantly induced, an effect which was suppressed in the presence of specific inhibitors of insulin receptor-like tyrosine kinases. Furthermore, upon expression of EmIR/HIR receptor chimera containing the extracellular ligand binding domain of EmIR in HEK 293 cells, a specific autophosphorylation of the chimera could be induced through the addition of exogenous insulin. These results indicated the capability of EmIR to sense and to transmit host insulin signals to the Echinococcus signaling machinery. The importance of insulin signaling mechanisms for parasite survival and growth were underscored by in vitro cultivation experiments in which the addition of an inhibitor of insulin receptor tyrosine kinases led to vesicle degradation and death. Based on the above outlined molecular data on the interaction between EmIR and mammalian insulin, the parasite’s insulin receptor orthologue most probably mediates the insulin effects on parasite growth and is, therefore, a potential candidate factor for host-parasite communication via evolutionary conserved pathways. In a final set of experiments, signaling mechanisms that act downstream of EmIR have been analyzed. These studies revealed significant differences between insulin signaling in Echinococcus and the related cestode parasite Taenia solium. These differences could be associated with differences in the organo-tropism of both species. / Der orthologe Insulinrezeptor EmIR des Fuchsbandwurmes Echinococcus multilocularis weist signifikante strukturelle Homologie zum humanen Insulinrezeptor (HIR) auf. Es wurde schon seit geraumer Zeit vermutet, dass EmIR an den Mechanismen beteiligt sein könnte, die es dem Metacestoden Larvenstadium des Parasiten erlauben Insulin zu detektieren. In dieser Arbeit wurden die Effekte von Wirtsinsulin auf Echinococcus Metacestoden-Vesikel und die vermutete Interaktion zwischen EmIR und Insulin von Säugern mittels biochemischer und zellbiologischer experimenteller Ansätze untersucht. Die exogene Zugabe von humanem Insulin zu in vitro kultivierten Parasitenlarven hatte folgende Effekte: (i) das Überleben und das Wachstum des Parasiten wurde signifikant stimuliert; (ii) die DNA de novo Synthese in Echinococcus wurde induziert; (iii) die generelle Proteinphosphorylierung des Parasiten wurde beeinflusst; (iv) die Phosphorylierung der orthologen Erk-like MAP Kinase, EmMPK1, des Parasiten wurde spezifisch induziert. Diese Beobachtungen zeigen deutlich, dass Echinococcus Metacestoden-Vesikel exogenes Insulin des Wirtes detektieren können und dass dieses Insulin einen mitogenischen Effekt auf den Parasiten hat. Um zu untersuchen, ob diese Effekte durch EmIR vermittelt werden, wurden anti-EmIR Antikörper hergestellt und in biochemischen experimentellen Ansätzen und immunohistochemischen Analysen eingesetzt. Es konnte gezeigt werden, dass EmIR in der Germinalschicht des Parasiten expremiert wird, sowohl an der Oberfläche von Glykogen-Speicherzellen als auch von undifferenzierten Germinalzellen. Nach der Zugabe von exogenem Insulin konnte eine signifikante Zunahme der Phosphorylierung von EmIR festgestellt werden. Diese Stimulierung konnte durch die Zugabe eines spezifischen Inhibitors für Insulinrezeptor-ähnliche Tyrosinkinasen unterdrückt werden. Desweiteren konnte mittels der Expression eines chimären EmIR/HIR-Rezeptors, der die extrazelluläre Ligandenbindungsdomäne von EmIR enthielt, in HEK293 Zellen gezeigt werden, dass die Zugabe von exogenem Insulin eine spezifische Autophosphorylierung der Chimäre induziert. Diese Ergebnisse bezeugen die Fähigkeit von EmIR Insulin-abhängige Signale des Wirtes einerseits zu detektieren und andererseits an die Echinococcus Signalwege weiter zu leiten. Die Bedeutung von Insulin-Signalmechanismen für das Überleben und das Wachstum des Parasiten konnte durch in vitro Kultivierungsexperimente aufgezeigt werden. Die Zugabe eines Inhibitors spezifisch für Insulinrezeptor Tyrosinkinasen verursachte die Degradation und den Tod der Metacestoden-Vesikel. Basierend auf den dargelegten molekularen Daten bezüglich der Interaktion zwischen EmIR und Insulin von Säugern erscheint es sehr wahrscheinlich, dass der orthologe Insulinrezeptor des Parasiten die Effekte von Insulin auf das Wachstum des Parasiten vermittelt. Aus diesem Grund ist EmIR ein potentieller Kandidat für die Kommunikation zwischen Wirt und Parasiten mittels evolutionär konservierten Signalwegen. Die Signalmechanismen unterhalb von EmIR wurden in abschließenden Experimenten untersucht. Diese offenbarten deutliche Unterschiede in der Weiterleitung von Insulin induzierten Signalen zwischen Echinococcus und dem verwandten parasitären Zestoden Taenia solium. Diese Unterschiede könnten mit dem unterschiedlichen Organtropismus beider Arten in Verbindung stehen.
2

Charakterisierung und Funktionsanalyse von EmRSK4, einem TGF-beta Typ II-Rezeptor aus Echinococcus multilocularis / Characterization of EMRSK4 a TGF-beta Typ II-Rezeptor from Echinococcus multilocularis

Bernthaler, Peter January 2009 (has links) (PDF)
Die Alveoläre Echinokokkose ist eine bedeutende, gefährliche Parasitose des Menschen. Über die molekularen Grundlagen und Mechanismen der Wirt-Parasit- Interaktion ist bislang nur wenig bekannt. In den letzten Jahren konnten Hinweise erlangt werden, dass Wirt und Parasit über evolutionsgeschichtlich konservierte Signalsysteme kommunizieren. Eines dieser Systeme ist das TGF-b/BMP-Signaltransduktionssystem. TGF-β-Signaltransduktionskomponenten steuern grundlegende Prozesse der Entwicklung und Differenzierung in allen Tieren. Über dieses Signalsystem wird ein weites Spektrum von zellulären Prozessen wie Proliferation, Apoptose und Differenzierung reguliert. Dieses System besteht aus strukturell verwandten Zytokinen der TGF-β (transforming growth factor β) bzw. BMP (bone morphogenetic protein)-Familie, membranständigen Rezeptoren der TGF-β-Rezeptorfamilie (Typ I und Typ II) sowie intrazellulären Signaltransduktoren der Smad-Familie. Bislang konnten verschiedene Echinokokken Smad-Faktoren (EmSmadA, EmSmadB, EmSmadC und EmSmadD) sowie drei Echinokokken Rezeptoren der Typ I Familie (EmRSK1, EmRSK2, EmRSK3) in E. multilocularis identifiziert werden. Ein Mitglied der TGF-β Typ II-Rezeptorfamilie war bislang noch nicht beschrieben. In dieser Arbeit wird ein solches Molekül vorgestellt, EmRSK4 (=TGF-b Typ IISerin/ Threonin Kinase Rezeptor aus Echinococcus multilocularis). Genexpressionsanalysen und immunhistochemische Untersuchungen zeigen an, dass EmRSK4 in der Germinalschicht des E. multilocularis Metacestoden zusammen mit EmRSK1 (=BMP Typ I-Serin/Threonin Kinase Rezeptor) exprimiert wird. Studien an heterolog exprimierten Rezeptoren zeigten, dass EmRSK4 funktionell aktiv ist und mit humanen Typ I-Rezeptoren einen Komplex bilden kann. Diese Studien zeigen auch, dass EmRSK4 mit EmRSK1 einen aktiven heterologen Typ I-/Typ II-Rezeptorkomplex in HEK293-T Zellen bildet, der durch Wirts-BMP2 stimuliert wird und EmSmadB aktiviert. In Untersuchungen mit EmRSK2 (= TGF-β Typ ISerin/ Threonin Kinase Rezeptor) konnte gezeigt werden, dass bei Anwesenheit beider Rezeptoren, EmRSK2 und EmRSK4, eine Phosphorylierung von EmSmadC nachweisbar ist, während eine Phosphorylierung von EmSmadA auch ohne die Anwesenheit von EmRSK4 stattfindet. Desweiteren konnte gezeigt werden, dass der Inhibitor SB-431452 die Kinaseaktivität von EmRSK2 hemmt. Nach Zugabe von exogenem BMP2 zu Metazestodenvesikel konnten Hinweise erhalten werden, dass ein bislang noch nicht charakterisiertes, zusätzliches EmSmad aktiviert wird. Zusammengenommen lässt die Co-Expression von EmRSK1 mit EmRSK4 in der Germinalschicht, die Bildung eines BMP-responsiven Komplexes aus beiden Rezeptoren und die Phosphorylierung mindestens eines zellulären Faktors nach exogener Zugabe von Wirts-BMP2 zu Metacestodenvesikeln darauf schließen, dass beide Rezeptoren während einer Infektion an der Sensierung von BMP Signalen des Wirts beteiligt sein könnten / Alveolar echinococcosis is an important and dangerous parasitosis in humans which is caused by the larval stage of the fox-tapeworm E. multilocularis. Up to now, little is known about the molecular mechanisms of the interaction between the human host and the parasite. During recent years, evidence could be obtained that the host and the parasite communicate through evolutionary conserved signal systems. One of these is the TGF- β/BMP signal transduction system. TGF-β signal transduction components regulate basic processes of development and differentiation in all animals such as proliferation, apoptosis and differentiation. The system consists of structurally related cytokines of the TGF-β (transforming growth factor β)/BMP (bone morphogenetic protein) family, transmembrane receptors of the TGF-β receptor family called the type I and type II receptor as well as intracellular signal transducers of the Smad family. So far different Echinococcus Smad factors (EmSmadA, EmSmadB, EmSmadC and EmSmadD) as well as three Echinococcus receptors of the type I family (EmRSK1, EmRSK2 and EmRSK3) have been identified. No member of the TGF-β type II receptor family has as yet been reported for E. multilocularis. In this study such a receptor, EmRSK4 (=TGF-β type II serine/threonine kinase receptor from Echinococcus multilocularis), has been identified and characterized. Gene expression studies and immunohistochemistry show that EmRSK4 and EmRSK1 (=TGF-β type I serine/threonine kinase receptor) are co-expressed together in the germinal layer of the parasitic metacestode. Studies on heterologously expressed receptors show that EmRSK4 is able to form a functionally active complex with EmRSK1 which is stimulated by host BMP2 and activates EmSmadB. Studies with EmRSK2 (=TGF-β type I serine/threonine kinase receptor) showed that a phosphorylation of EmSmadC is only detectable in the presence of both receptors, EmRSK2 and EmRSK4, while EmRSK2 does not require EmRSK4 for activating EmSmadA. Furthermore it could be shown that the inhibitor SB-431452 inhibits the kinase activity of EmRSK2. After addition of exogenous BMP2 to metacestode vesicles elevated phosphorylation of an as yet uncharacterized Smad-factor was detected, indicating that intact parasite vesicles are able to respond to exogenous host cytokines. Taken together the Co-expression of EmRSK1 and EmRSK4 in the germinal layer, the formation of a BMP responsive complex and the phosphorylation of at least onecellular factor after exogenous addition of host BMP2 to metacestode vesicles suggest that both receptors play a role in sensing of BMP signals during an infection.
3

Isolierung, Charakterisierung und Funktionsanalyse von TGF-Beta-Signaltransduktionskomponenten des Fuchsbandwurms Echinococcus multilocularis / Structural and functional characterization of TGFß signaling systems in Echinococcus multilocularis

Zavala Góngora, Ricardo January 2005 (has links) (PDF)
Die molekularen Mechanismen der Wirt-Parasit-Interaktion bei der durch den Zestoden Echinococcus multilocularis ausgelösten Erkrankung der alveolären Echinokokkose sind bislang ungeklärt. Zudem liegen keine Daten über Entwicklungs- und Differenzierungsmechanismen dieses Parasiten vor, die für die Entwicklung neuer Antiparasitika genutzt werden könnten. Ein bei der Evolution der Metazoen bereits frühzeitig entstandener Signaltransduktionsmechanismus zur Steuerung von Entwicklungsvorgängen ist das TGFβ/BMP-System, das aus strukturell verwandten Zytokinen der TGFβ (transforming growth factor β) bzw. BMP (bone morphogenetic protein)-Familie, oberflächenständigen Rezeptoren der TGFβ-Rezeptorfamilie (Typ I und Typ II) und intrazellulären Signaltransduktoren der Smad-Familie besteht. Außer an Entwicklungsvorgängen tierischer Organismen könnte diesem System eine wichtige Rolle bei der Wirt-Helminth-Kommunikation während Infektionsprozessen zukommen, wie in vorherigen Studien am Nematoden Brugia malayi und am Trematoden Schistosoma mansoni gezeigt werden konnte. Erste, wichtige Schritte zur Charakterisierung von TGFβ und BMP-Signalsystemen in Zestoden wurden in der vorliegenden Arbeit getan. Aufbauend auf einem vorherigen Bericht zu einem Transmembranrezeptor (EmRSK1) und einem Smad-Homologen (EmSmadA) aus Echinococcus multilocularis wurde die Liste der TGFβ/BMP Signaltransduktionsfaktoren in E. multilocularis in dieser Arbeit deutlich erweitert und erstmals umfangreiche funktionelle Studien durchgeführt. Die hier charakterisierten Faktoren umfassen zwei weitere Serin/Threonin-Kinasen der TGFβ/BMP-Rezeptorfamilie (EmRSK2, EmRSK3) sowie intrazelluläre Transduktoren der R-Smad-Subfamilie (EmSmadB, EmSmadC) und ein Homologes zur MAP-kinase-kinase-kinase TAK1 (TGFβ activated kinase 1), genannt EmTAK1. Zudem konnte erstmals für einen parasitären Helminthen ein Zytokin der BMP-Subfamilie, EmBMP, auf molekularer Ebene charakterisiert werden. Strukturelle und funktionelle Untersuchungen legen nahe, dass E. multilocularis sowohl ein TGFβ wie auch ein BMP-Signalsystem exprimiert. Ersteres wird sehr wahrscheinlich durch die Kinase EmRSK2 und den Smad-Faktor EmSmadC gebildet, letzteres durch EmRSK1 und EmSmadB. EmSmadA nimmt eine Sonderstellung ein, da es sowohl durch TGFβ- wie auch durch BMP-Rezeptoren aktiviert werden kann. Die genaue Rolle von EmRSK1 und EmTAK1 wäre durch weitere Untersuchungen zu klären. Signifikante funktionelle Homologien zwischen den TGFβ/BMP-Signalsystemen des Parasiten und Säugern konnten nachgewiesen werden, die sich u.a. darin äußern, dass die Echinococcus Smad-Proteine durch entsprechende Rezeptoren des Menschen aktiviert werden können. Darüber hinaus konnten jedoch auch einige deutliche Unterschiede zwischen den Systemen aus Parasit und Wirt nachgewiesen werden, die sich als Angriffspunkte zur Entwicklung von Chemotherapeutika eignen könnten. So fehlt den Smad-Faktoren EmSmadA und EmSmadC eine MH1-Domäne, die sonst unter allen R-Smads hoch konserviert ist. Zudem sind einige bislang noch nie beschriebene, strukturelle Besonderheiten der Echinococcus TGFβ/BMP-Rezeptoren zu verzeichnen. Auch die Regulation dieser Faktoren und die Kreuz-Interaktion mit weiteren intrazellulären Signalwegen (z.B. der MAP Kinase Kaskade) scheint in E. multilocularis anders zu verlaufen als bislang für Vertebraten, Insekten oder Nematoden beschrieben. Schließlich konnte, als sehr wichtiger Befund, auch nachgewiesen werden dass mindestens ein Rezeptor des Parasiten, EmRSK1, mit einem Zytokin des Wirts (BMP2) in vitro funktionell interagiert. Da BMP2 in Zellkultursystemen, die das Wachstum des Parasiten am befallenen Wirtsorgan nachstellen, einen deutlichen Effekt auf E. multilocularis ausübt, könnte die hier beschriebene EmRSK1/BMP2 – Interaktion von entscheidender Bedeutung für die Wirt-Parasit-Interaktion bei der alveolären Echinokokkose sein. / Up to now, the molecular mechanisms of the interactions between host and parasite in the disease of alveolar echinococcosis, caused by the cestode Echinococcus multilocularis, are not understood. Furthermore there are not data available about the mechanisms of development and differentiation in this parasite that could be used for the design of novel antiinfectives. One of the signaling systems which emerged very early in metazoan evolution and which presumably controls developmental processes in all animals is the TGFβ signal transduction system. This system consists of various factors: structurally related cytokines of the TGFβ (transforming growth factor β) and the BMP (bone morphogenetic protein) family, surface associated receptors of the TGFβ receptor family (type I and type II) and intracellular signal transduction factors of the Smad family. In addition to their crucial role in animal development, TGFβ/BMP systems could also play an important role in the communication between host and helminths during an infection, as has been shown previous studies on the nematode Brugia malayi and the trematode Schistosoma mansoni. In this study, the initial steps towards a characterization of TGFβ/BMP signaling in the third large group of parasitic helminths, the cestodes, have been made. Adding to a previous report on a transmembrane receptor (EmRSK1) and a Smad homologue (EmSmadA) from E. multilocularis, this work significantly extends the list of known TGFβ/BMP signaling factors from Echinococcus and provides, for the first time, functional studies on these systems. The newly characterized factors comprise two further serin/threonin kinases of the TGFβ/BMP receptor family (EmRSK2, EmRSK3), two further intracellular transducing factors belonging to the subfamiliy of R-smads (EmSmadB, EmSmadC) and one homologue of the MAP-kinase-kinase-kinase TAK1 (TGFβ activated kinase 1), which was designated EmTAK1. Furthermore, and for the first time in a parasitic helminth, a cytokine of the BMP subfamily was characterized on the molecular level. Structural and functional studies suggested that E. multilocularis expresses both a TGFβ and a BMP signaling system. The kinase EmRSK2 and the Smad factor EmSmadC are most probably components of the first, EmRSK1 and EmSmadB parts of the latter system. Surprisingly, EmSmadA seems to constitute an unusual Smad since it can be activated by both TGFβ and the BMP receptors upon expression in mammalian cells. The precise roles of EmRSK3 and EmTAK1 have to be determined in future studies. In the present work, significant structural and functional homologies between the TGFβ/BMP systems of E. multilocularis and its mammalian hosts have been detected. Upon expression in human cells, the Echinococcus Smad proteins were, for example, able to functionally interact with the corresponding receptors from Homo sapiens. On the other hand, the E. multilocularis TGFβ/BMP signaling factors also displayed several biochemical differences to those of the host, which could be exploited for the development of antiparasitic drugs. One of these differences is the lack of a usually conserved MH1 domain in EmSmadA and EmSmadC. Moreover, the Echinococcus TGFβ/BMP receptors display several structural features which have not yet been detected in other members of the protein superfamily. Likewise, the regulation of TGFβ/BMP pathways in Echinococcus as well as their cross-interaction with other signaling pathways (e.g. the MAP kinase cascade) seems to differ from the situation in vertebrates, insects and nematodes. Finally, this work also provides evidence that at least one host cytokine, BMP-2, can functionally interact with a receptor of the parasite, EmRSK1. This interaction could be highly relevant for host-parasite interaction mechanisms in alveolar echinococcosis since BMP-2 also exerts clear effects on Echinococcus growth and differentiation in an in vitro cultivation system that mimicks the situation at the affected organ during an infection.
4

Untersuchungen zur in vitro Kultivierung und Charakterisierung von MAP-Kinase-Kaskade-Komponenten des Fuchsbandwurmes Echinococcus multilocularis / Echinococcus multilocularis: in vitro cultivation and characterisation of MAP kinase cascade components

Spiliotis, Markus January 2006 (has links) (PDF)
Es wird angenommen, dass die invasiven Stadien parasitärer Helminthen zur Organfindung und zur Weiterentwicklung auf die Sensierung spezifischer Wirts-Signale angewiesen sind, wobei die molekulare Natur dieser Signale bislang weitgehend ungeklärt ist. Vorangegangene Untersuchungen am Fuchsbandwurm Echinococcus multilocularis, dem Erreger der alveolären Echinokokkose, hatten bereits ergeben, dass dessen Metacestoden-Larvenstadium zur Weiterentwicklung kleine, lösliche Wirtsmoleküle benötigt. In der vorliegenden Arbeit wurde erstmals ein axenisches (Wirtszell-freies) Kultursystem für das Metacestoden-Stadium entwickelt, mittels dessen sich diese Fragestellungen in vitro angehen lassen. Mit Hilfe dieses Kultursystems konnte in der vorliegenden Arbeit gezeigt werden, dass die drei Wirts-Hormone/Zytokine, Insulin, epidermal growth factor (EGF) und bone morphogeneic protein 2 (BMP2), einen Einfluss auf die Proliferation und die Differenzierung von E. multilocularis haben. Während für Insulin und EGF Wachstums-stimulierende Effekte gezeigt werden konnten, förderte BMP2 die Differenzierung des Metacestoden zum nächsten Larvenstadium, dem Protoscolex. In Modellorganismen wie Säugern, Drosophila und Caenorhabditis elegans verlaufen die durch Insulin- und EGF-ähnlichen Zytokine induzierten Signalmechanismen über die sogenannte mitogen activated protein (MAP)-Kinase-Kaskade. Um zu untersuchen, ob die externe Zugabe von Wirts-Insulin bzw. -EGF in einer Stimulierung der MAPK-Kaskade des Parasiten führt, wurden in dieser Arbeit zunächst die Komponenten dieses Signalweges bei E. multilocularis auf molekulargenetischer und biochemischer Ebene charakterisiert. Die Arbeiten umfassten Studien zu kleinen GTPasen des Parasiten (EmRas, EmRap1, EmRap2, EmRal), zu einem Orthologen der Kinase Raf (EmRaf), sowie Orthologen der Kinasen MEK (EmMKK) und ERK (EmERK). Es konnte gezeigt werden, dass diese Faktoren in E. multilocularis Teil einer MAP-Kinase-Kaskade sind. Zudem wurde nachgewiesen, dass diese Faktoren stromabwärts eines EGF-Rezeptor-Orthologen (EmER) des Parasiten fungieren, welches ebenfalls in der vorliegenden Arbeit analysiert wurde. Damit wurden die Voraussetzungen geschaffen, den Einfluss exogen zugegebenen Insulins bzw. EGFs auf die Aktivierung der MAP-Kinase-Kaskade im Parasiten zu untersuchen. Erste Analysen zeigten bereits, dass die zentrale Komponente dieser Kaskade, EmERK, durch die genannten Wirts-Zytokine aktiviert wird. Dies legt nahe, dass Wirt-Parasit-Kommunikationsmechanismen über evolutionsgeschichtlich konservierte Signalsysteme eine wichtige Rolle im Infektionsgeschehen der alveolären Echinokokkose spielen. Aufbauend auf dem axenischen Kultursystem ist es in dieser Arbeit auch erstmals gelungen, Primärzellkulturen für E. multilocularis anzulegen und die Parasitenzellen zur in vitro Neubildung von Metacestoden-Vesikeln anzuregen. Erste Experimente zur genetischen Manipulation dieser Primärzellen konnten erfolgreich durchgeführt werden. Aufbauend auf der hier vorgestellten Methodik sollte es in künftigen Untersuchungen möglich sein, stabil transfizierte Echinococcus-Zellen zu generieren und diese zur Herstellung vollständig transgener Parasiten-Stadien zu nutzen. Dies würde die zur Untersuchung der E. multilocularis-Entwicklung und der Wirt-Parasit-Interaktionsmechanismen bei einer Infektion zur Verfügung stehenden Methoden entscheidend erweitern und könnte u.a. zur weiteren biochemischen Analyse der in dieser Arbeit dargestellten Signalmechanismen des Parasiten herangezogen werden. / It is assumed that the invasive stages of parasitary helminths are reliant on the sensing of specific host signals for organ targeting and development. The molecular nature of these signals is still mostly unsettled. Previous studies on the fox tapeworm Echinococcus multilocularis, the causative organism of alveolar echinococcosis showed that the metacestode larval stage requires small, soluble host molecules to develop further. For the first time, in this study an axenic (without host cells) culture system for the metacestode stage was developed which allows to address these questions in vitro. Using this culture system it could be shown that the three host hormomes/zytokines, insulin, epidermal growth factor (EGF) and bone morphogeneic protein 2 (BMP2) have influence on proliferation and differentiation of E. multilocularis. While insulin and EGF had growth-stimulating effects, BMP2 results in metacestode differentiation to the next larval stage, the protoscolex. In model organisms such as mammals, Drosophila und Caenorhabditis elegans the signals induced by insulin and EGF-related zytokines are transferred by the so-called mitogen activated protein (MAP) kinase cascade. In order to determine whether external addition of host insuline or host EGF leads to a stimulation of the MAPK cascade of the parasite, initially the components of the signal path of E. multilocularis were characterized on the moleculargenetic and biochemical level. The research comprised studies on small GTPases of the parasite (EmRas, EmRap1, EmRap2, EmRal) and an orthologue of the Raf Kinase (EmRaf) as well as orthologues of the MEK kinase (EmMKK) and ERK kinase (EmERK). It could be shown that the mentioned factors are part of a MAP kinase cascade in E. multilocularis. Furthermore it could be demonstrated that these factors act downstream of an EGF-receptor orthologue (EmER) of the parasite, which was also analysed in this study. Thereby a base was provided to investigate the influence of exogenic added insulin or EGF on the activation of the MAP kinase cascade in the parasite.First analyses showed that the mentioned host cytokines activate EmERK, the central component of this cascade. This suggests that host-parasite communication via evolutionary conserved signal systems play an important role in the infection scenario of the alveolar echinococcosis. Based on the axenic culture system, for the first time primary cells for E. multilocularis could be cultured and in vitro regeneration of metacestode vesicles could be excited in the parasite cells. First experiments on genetic manipulation on the primary cells were effected successfully. On this basis it should be possible to generate stable transfected Echinococcus cells and use these to generate completely transgenic parasite stages in future studies. This would be a critical extension of the set of methods available for research of the development of E. multilocularis and the host-parasite interaction mechanisms in an infection and could be drawn on for further biochemical analyses of the signal mechanisms of the parasites presented in this study.
5

Molecular characterization of evolutionarily conserved signaling systems of Echinococcus multilocularis and their utilization for the development of novel drugs against Echinococosis / Molekulare Charakterisierung evolutionsgeschichtlich konservierter Signalsysteme und deren Nutzung für die Entwicklung neuer Medikamente gegen Echinococcose

Hemer, Sarah January 2012 (has links) (PDF)
Alveolar echinococcosis (AE), a severe and life-threatening disease is caused by the small fox tapeworm Echinococcus multilocularis. Currently, the options of chemotherapeutic treatment are very limited and are based on benzimidazole compounds, which act merely parasitostatic in vivo and often display strong side effects. Therefore, new therapeutic drugs and targets are urgently needed. In the present work the role of two evolutionarily conserved signalling pathways in E. multilocularis, namely the insulin signalling cascade and Abl kinases, has been studied in regard to host-parasite interaction and the possible use in anti-AE chemotherapy. / Die alveoläre Echinokokkose ist eine ernste und lebensgefährliche Erkrankung, die durch den kleinen Fuchsbandwurm ausgelo ̈st wird. Die gegenwärtigen chemotherapeutischen Behandlungsmöglichkeiten beschränken sich auf die Behandlung mit Benzimidazolen, die in vivo nur parasitostatische Wirkung besitzen und häufig sehr starke Nebenwirkungen aufweisen. Aus diesem Grund besteht ein dringendes Bedürfnis nach neuen Medikamenten und Angriffszielen für diese. In der vorliegenden Arbeit wurde die Rolle zweier evolutionsgeschichtlich konservierter Signalsysteme, der Insulin Signalweg und die Abl Kinasen in E. multilocularis in Hinblick auf die Wirt-Parasiten Interaktion und dem mo ̈glichen Nutzen in der AE Chemotherapie untersucht.
6

Nuclear Hormone Receptors and Fibroblast Growth Factor Receptor Signaling in Echinococcus multilocularis / Signalwege in Echinococcus multilocularis am Beispiel der Nukleären Hormonrezeptoren und des Fibroblast Growth Factor Rezeptors

Förster, Sabine January 2012 (has links) (PDF)
Parasitic helminths share a large degree of common genetic heritage with their various hosts. This includes cell-cell-communication mechanisms mediated by small peptide cytokines and lipophilic/steroid hormones. These cytokines are candidate molecules for host-parasite cross-communication in helminth diseases. In this work the function of two evolutionary conserved signaling pathways in the model cestode Echinococcus multilocularis has been studied. First, signaling mechanisms mediated through fibroblast growth factors (FGF) and their cognate receptors (FGFR) which influence a multitude of biological functions, like homeostasis and differentiation, were studied. I herein investigated the role of EmFR which is the only FGFR homolog in E. multilocularis. Functional analyses using the Xenopus oocyte expression system clearly indicate that EmFR can sense both acidic and basic FGF of human origin, resulting in an activation of the EmFR tyrosine kinase domain. In vitro experiments demonstrate that mammalian FGF significantly stimulates proliferation and development of E. multilocularis metacestode vesicles and primary cells. Furthermore, DNA synthesis and the parasite’s Erk-like MAPK cascade module was stimulated in the presence of exogenously added mammalian FGF. By using the FGFR inhibitor BIBF1120 the activity of EmFR in the Xenopus oocyte system was effectively blocked. Addition of BIBF1120 to in vitro cultivated Echinococcus larval material led to detrimental effects concerning the generation of metacestode vesicles from parasite stem cells, the proliferation and survival of metacestode vesicles, and the dedifferentiation of protoscoleces towards the metacestode. In conclusion, these data demonstrate the presence of a functional EmFR-mediated signaling pathway in E. multilocularis that is able to interact with host-derived cytokines and that plays an important role in larval parasite development. Secondly, the role of nuclear hormone receptor (NHR) signaling was addressed. Lipophilic and steroid hormone signaling contributes to the regulation of metazoan development. By means of in silico analyses I demonstrate that E. multilocularis expresses a set of 17 NHRs that broadly overlaps with that of the related flatworms Schistosoma mansoni and S. japonicum, but also contains several NHR encoding genes that are unique to this parasite. One of these, EmNHR1, is homolog to the DAF-12/HR-96 subfamily of NHRs which regulate cholesterol homeostasis in metazoans. Modified yeast-two hybrid analyses revealed that host serum contains a ligand which induces homodimerization of the EmNHR1 ligand-binding domain. Also, a HNF4-like homolog, EmHNF4, was characterized. Human HNF4 plays an important role in liver development. RT-PCR experiments showed that both isoforms of the EmHNF4 encoding gene are expressed stage-dependently suggesting distinct functions of the two isoforms in the parasite. Moreover, specific regulatory mechanisms on the convergence of NHR signaling and TGF-β/BMP signaling pathways in E. multilocularis have been identified. On the one hand, EmNHR1 directly interacted with the EmSmadC and on the other hand EmHNF4b interacted with EmSmadD, EmSmadE which are all downstream signaling components of the TGF-β/BMP signaling pathway. This suggests cross-communication in order to regulate target gene expression. With these results, further studies on the role of NHR signaling in the cestode will be facilitated. Also, the first serum-free in vitro cultivation system for E. multilocularis was established using PanserinTM401 as medium. Serum-free co-cultivation with RH-feeder cells and an axenic cultivation method have been established. With the help of this serum-free cultivation system investigations on the role of specific peptide hormones, like FGFs, or lipophilic/steroid hormones, like cholesterol, for the development of helminths will be much easier. / Parasitäre Würmer weisen eine große genetische Verwandtschaft mit ihren Wirten auf. Diese schließt auch Zell-Zell-Kommunikationsmechanismen ein, die sowohl durch Peptidhormone als auch durch lipophile/steroidale Hormone vermittelt werden. Man vermutet, dass diese Stoffe eine wichtige Rolle bei der Wirt-Parasiten-Kreuzkommunikation spielen. Deshalb untersuchte diese Arbeit die Funktion von zwei konservierten Signalwegen im Modellorganismus Echinococcus multilocularis. Der erste Teil dieser Arbeit beschäftigt sich mit den Fibroblast Growth Factors (FGF). Diese steuern durch die Bindung an spezifische FGF-Rezeptoren (FGFR) eine Vielzahl von biologischen Funktionen, wie beispielsweise Homöostase- und Differenzierungsprozesse. Zunächst wurde EmFR, das einzige FGFR-Homolog im Fuchsbandwurm in Xenopus Oozyten heterolog exprimiert. Dabei wurde nachgewiesen, dass der Rezeptor sowohl acidic als auch basic FGF erkennen kann und dies zur Aktivierung der Tyrosinkinasedomäne führt. Außerdem förderte im in vitro Experiment die exogene Zugabe dieser Wirtsfaktoren die Proliferation und Entwicklung von Metacestodenvesikeln und Primärzellen. Darüber hinaus wurden die DNA-Synthese und die Erk-MAPK-Kaskade des Parasiten stimuliert. Im Gegensatz dazu konnte durch die Hinzugabe des FGFR-Inhibitor BIBF1120 die Aktivität des Rezeptors im Xenopus Oozytensystem erfolgreich blockieret werden. Durch den Inhibitor wurde die Regeneration von Metacestodenvesikeln aus Stammzellen, die Proliferation und das Überleben von Metacestodenvesikeln verhindert und eine Dedifferenzierung von Protoskolizes verursacht. Zusammengefasst zeigen diese Daten, dass E. multilocularis einen funktionellen durch EmFR-vermittelten Signalweg besitzt, welcher in der Lage ist, mit Wirtszytokinen zu interagieren und eine wichtige Rolle bei der Entwicklung von Echinococcus Larvenstadien spielt. Außerdem wurde die Bedeutung der Nukleären Hormon Rezeptoren (NHR) für den Parasiten untersucht. Lipophile und steroidale Hormone regulieren viele Entwicklungsprozesse in Metazoen. Mittels in silico Analyse konnten 17 Rezeptoren der NHR-Familie in E. multilocularis identifiziert werden, die größtenteils mit dem NHR Repertoire von Schistosoma mansoni und S. japonicum übereinstimmen. Allerdings wurden auch Rezeptoren identifiziert, die einzigartig für E. multilocularis sind. Einer dieser Rezeptoren, EmNHR1, ist homolog zur DAF-12/HR-96 Familie, die den Cholesterinstoffwechsel in Metazoen reguliert. Yeast-Two Hybrid Experimente zeigten, dass Wirtsserum den putativen Liganden von EmNHR1 enthält, da dessen Zugabe zur Homodimerisierung der EmNHR1-Liganden-bindungsdomäne führte. Außerdem wurde mit EmHNF4 ein weiterer Rezeptor charakterisiert, dessen humanes Homolog die Entwicklung der Leber beeinflusst. RT-PCR-Experimente zeigten, dass die zwei entdeckten Isoformen von EmHNF4 stadienspezifisch exprimiert werden, was auf mögliche Funktionsunterschiede deutet. Darüber hinaus wurde sowohl für EmNHR1, als auch für EmHNF4 beobachtet, dass die DNA-Bindungsdomänen mit Komponenten des TGF-β/BMP-Signalwegs direkte Proteininteraktionen eingehen. Während EmNHR1 mit EmSmadC interagiert, zeigte EmHNF4b eine Reaktion mit EmSmadD und EmSmadE, was auf eine Kreuzkommunikation zwischen beiden Signalwegen deutet. Diese Ergebnisse werden zukünftige Studien bezüglich der Funktion von NHR-Signalwegen in Zestoden deutlich erleichtern. Weiterhin wurde in dieser Arbeit das erste serum-freie in vitro Kultivierungssystem für E. multilocularis etabliert. PanserinTM401 diente als Medium sowohl für die Kultur mit Fütterzellen als auch für eine axenische Kulturmethode. Mit Hilfe dieses Systems können in Zukunft Untersuchungen über die Rolle von Peptidhormonen wie FGF, oder lipophilen bzw. steroidalen Substanzen, wie Cholesterin, bei der Parasitenentwicklung besser untersucht werden.
7

Molecular and developmental characterization of the Echinococcus multilocularis stem cell system / Molekulare und entwicklungsbiologische Charakterisierung des Echinococcus multilocularis Stammzellsystems

Koziol, Uriel January 2014 (has links) (PDF)
The metacestode larva of Echinococcus multilocularis is the causative agent of alveolar echinococcosis (AE), one of the most dangerous zoonotic diseases in the Northern Hemisphere. Unlike “typical” metacestode larvae from other tapeworms, it grows as a mass of interconnected vesicles which infiltrates the liver of the intermediate host, continuously forming new vesicles in the periphery. From these vesicles, protoscoleces (the infective form for the definitive host) are generated by asexual budding. It is thought that in E. multilocularis, as in other flatworms, undifferentiated stem cells (so-called germinative cells in cestodes and neoblasts in free-living flatworms) are the sole source of new cells for growth and development. Therefore, this cell population should be of central importance for the progression of AE. In this work, I characterized the germinative cells of E. multilocularis, and demonstrate that they are indeed the only proliferating cells in metacestode vesicles. The germinative cells are a population of undifferentiated cells with similar morphology, and express high levels of transcripts of a novel non-autonomous retrotransposon family (ta-TRIMs). Experiments of recovery after hydroxyurea treatment suggest that individual germinative cells have extensive self-renewal capabilities. However, germinative cells also display heterogeneity at the molecular level, since only some of them express conserved homologs of fgfr, nanos and argonaute genes, suggesting the existence of several distinct sub-populations. Unlike free-living flatworms, cestode germinative cells lack chromatoid bodies. Furthermore, piwi and vasa orthologs are absent from the genomes of cestodes, and there is widespread expression of some conserved neoblast markers in E. multilocularis metacestode vesicles. All of these results suggest important differences between the stem cell systems of free-living flatworms and cestodes. Furthermore, I describe molecular markers for differentiated cell types, including the nervous system, which allow for the tracing of germinative cell differentiation. Using these molecular markers, a previously undescribed nerve net was discovered in metacestode vesicles. Because the metacestode vesicles are non-motile, and the nerve net of the vesicle is independent of the nervous system of the protoscolex, we propose that it could serve as a neuroendocrine system. By means of bioinformatic analyses, 22 neuropeptide genes were discovered in the E. multilocularis genome. Many of these genes are expressed in metacestode vesicles, as well as in primary cell preparations undergoing complete metacestode regeneration. This suggests a possible role for these genes in metacestode development. In line with this hypothesis, one putative neuropeptide (RGFI-amide) was able to stimulate the proliferation of primary cells at a concentration of 10-7 M, and the corresponding gene was upregulated during metacestode regeneration. / Das Metazestoden Larvenstadium von Echinococcus multilocularis ist die Ursache für die alveoläre Echinokokkose (AE), eine der gefährlichsten Zoonosen in der nördlichen Hemisphäre. Im Gegensatz zu Metazestoden anderer Bandwürmer wächst es zu einem Labyrinth verknüpfter Vesikel, die in der Peripherie permanent neu gebildet werden und dabei die Leber des Wirts infilitrieren. In diesen Vesikeln werden die Protoskolizes (das infizierende Stadium für den Endwirt) durch asexuelle Knospung aus der Vesikelwand heraus gebildet. Man geht davon aus dass in E. multilocularis, wie in anderen Plattwürmen, undifferenzierte Stammzellen (so gennante „Germinative cells” in Bandwürmern und Neoblasten in Turbellarien) der einzige Ursprung neuer Zellen für Wachstum und Entwicklung sind. Deshalb sollte diese Zellpopulation eine zentrale Rolle im Fortschritt der AE spielen. In dieser Arbeit habe ich die Germinative cells von E. multilocularis charakterisiert und zeige, dass sie tatsächlich die einzigen sich vermehrenden Zellen in Metazestodenvesikeln sind. Die Germinative cells sind eine Population von undifferenzierten Zellen mit ähnlicher Morphologie, die eine hohe Zahl an Transkripten einer neuen Retrotransposonfamilie (ta-TRIMs) exprimieren. Experimente nach Behandlung mit Hydroxyurea deuten darauf hin, dass einzelne Germinative cells die Fähigkeit haben sich selbst zu erneuern. Allerdings, zeigen die Germinative cells auch Heterogenität auf molekurarer Ebene, da nur manche von Ihnen konservierte Homologe von fgfr, nanos und argonaute Genen exprimieren, was auf die Existenz eindeutiger Subpopulationen hinweist. Im Gegensatz zu Turbellarien fehlen den Germinative cells von Zestoden “Chromatoid bodies”, weiterhin fehlen dem Genom der Zestoden Orthologe von piwi und vasa und es werden einige Neoblastenmarker in den Metazestodenvesikeln von E. multilocularis umfassend exprimiert. All diese Ergebnisse zeigen deutliche Unterschiede zwischen den Stammzellsystemen von Turbellarien und Zestoden auf. Ich beschreibe ausserdem molekulare Marker für differenzierte Zelltypen, inklusive solche des Nervensystems. Mit diesen Markern wurde ein Nervennetz in Metazestodenvesikeln endeckt, das bis dato unbeschrieben war. Da die Vesikel unbeweglich sind und ihr Nervennetz unabhängig vom Nervensystem des Protoscolex ist wird angenommen dass es als Neuroendokrinsystem dient. Mit Hilfe von Genomanalysen wurden 22 Neuropeptidgene im Genom von E. multilocularis entdeckt. Viele von ihnen werden sowohl in Metazestodenvesiklen exprimiert als auch in Primärzellpräparationen, die zu kompletten Vesikeln regenerieren. Das weist auf eine mögliche Rolle dieser Gene in der Metazestodenentwicklung hin. Einhergehend mit dieser Hypothese war ein putatives Neuropeptid (RGFIamide) in der Lage die Vermehrung von Primärzellen bei einer Konzentration von 10-7 M zu stimulieren, dabei war das korrespondierende Gen während der Metazestodenregeneration hochreguliert.
8

Protein kinases as targets for the development of novel drugs against alveolar echinococcosis / Proteinkinasen als Angriffspunkte für die Entwicklung neuer Chemotherapeutika gegen die Alveoläre Echinokokkose

Schubert, Andreas January 2015 (has links) (PDF)
The metacestode larval stage of the fox tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis (AE), one of the most lethal zoonosis of the northern hemisphere. The development of metacestode vesicles by asexual multiplication and the almost unrestricted infiltrative growth within the host organs is ensured from a population of undifferentiated, proliferative cells, so-called germinative cells. AE treatment options include surgery, if possible, as well as Benzimidazole-based chemotherapy (BZ). Given that the cellular targets of BZs, the -tubulins, are highly conserved between cestodes and humans, the chemotherapy is associated with considerable side-effects. Therefore, BZ can only be applied in parasitostatic doses and has to be given lifelong. Furthermore, the current anti-AE chemotherapy is ineffective in eliminating the germinative cell population of the parasite, which leads to remission of parasite growth as soon as therapy is discontinued. This work focuses on protein kinases involved in the proliferation and development of the parasite with the intention of developing novel anti-AE therapies. Polo-like kinases (Plks) are important regulators of the eukaryotic cell cycle and are involved in the regulation and formation of the mitotic spindles during the M-phase of the cell cycle. Plks have already been shown to be associated with deregulated cellular growth in human cancers and have been investigated as novel drug targets in the flatworm parasite Schistosoma mansoni. In the first part of this work, the characterisation of a novel and druggable parasite enzyme, EmPlk1, which is homologous to the polo-like kinase 1 (Plk1) of humans and S. mansoni (SmPlk1), is presented. Through in situ hybridisation, it could be demonstrated that emplk1 is specifically expressed in the Echinococcus germinative cells. Upon heterologous expression in the Xenopus oocyte system, EmPlk1 induced germinal vesicle breakdown, thus indicating that it is an active kinase. Furthermore, BI 2536, a compound originally designed to inhibit the human ortholog of EmPlk1, inhibited the EmPlk1 activity at a concentration of 25 nM. In vitro treatment of parasite vesicles with similar concentrations of BI 2536 led to the elimination of the germinative cells from Echinococcus larvae, thus preventing the growth and further development of the parasite. In in vitro cultivation systems for parasite primary cells, BI 2536 effectively inhibited the formation of new metacestode vesicles from germinative cells. Thus, BI 2536 has profound anti-parasitic activities in vitro at concentrations well within the range of plasma levels measured after the administration of safe dosages to patients (50 nM after 24 h). This implies that EmPlk1 is a promising new drug target for the development of novel anti-AE drugs that would specifically affect the parasite’s stem cell population, namely the only parasite cells capable of proliferation. In addition to the chemotherapeutic aspects of this work, the inhibitor BI 2536 could be further used to study the function of stem cells in this model organism, utilising a method of injection of parasite stem cells into metacestode vesicles, for instance, as has been developed in this work. In the second part of this work, a novel receptor tyrosine kinase, the Venus flytrap kinase receptor (EmVKR) of E. multilocularis has been characterised. Members of this class of single-pass transmembrane receptors have recently been discovered in the related trematode S. mansoni and are associated with the growth and differentiation of sporocyst germinal cells and ovocytes. The ortholog receptor in EmVKR is characterised by an unusual domain composition of an extracellular Venus flytrap module (VFT), which shows significant similarity to GABA receptors, such as the GABAB receptor (γ-amino butyric acid type B) and is linked through a single transmembrane domain to an intracellular tyrosine kinase domain with similarities to the kinase domains of human insulin receptors. Based upon the size (5112bp) of emvkr and nucleotide sequence specificities, efforts have been made to isolate the gene from cell culture samples to study the ligand for the activation of this receptor type in Xenopus oocytes. To date, this type of receptor has only been described in invertebrates, thus making it an attractive target for drug screening. In a first trial, the ATP competitive inhibitor AG 1024 was tested in our in vitro cell culture. In conclusion, the EmVKR represents a novel receptor tyrosine kinase in E. multilocularis. Further efforts have to be made to identify the activating ligand of the receptor and its cellular function, which might strengthen the case for EmVKR as a potential drug target. The successful depletion of stem cells in the metacestode vesicle by the Plk1 inhibitor BI 2536 gives rise to optimising the chemical component for EmPlk1 as a new potential drug target. Furthermore, this inhibitor opens a new cell culture technique with high potential to study the cellular behaviour and influencing factors of stem cells in vitro. / Das Verbreitungsgebiet des kleinen Fuchsbandwurms erstreckt sich über die nördliche Hemisphäre und eine Infektion des Menschen verursacht eine meist tödliche verlaufende Parasitose, die alveolaren Echinococcose (AE). Durch infiltratives und asexuelles Wachstum des Larvenstadiums der AE im betroffenen Wirtsorgan kommt es zu einer tödlich verlaufenden Krankheit. Das Wachstum der Metacestoden wird dabei durch undifferenzierte proliferierende Stammzellen, den sog. „germinativen Zellen“ des Fuchsbandwurmes verursacht. Die derzeitigen Behandlungsmöglichkeiten von AE sehen neben einem chirurgischen Eingriff, der in den meisten Fällen nicht möglich ist, nur eine Chemotherapie mit Benzimidazolen (BZ) vor. Die Chemotherapie mit BZ richtet sich dabei gegen die β-Tubuline des Parasiten und ist überwiegend mit einer lebenslangen Behandlung verbunden. Obwohl sich die Behandlungsmöglichkeiten und die Prognose für Patienten seit der Verwendung von Benzimidazolen bedeutsam verbessert haben, kommt es dennoch zu starken Nebenwirkungen und die angewendete Chemotherapie wirkt nur parasitostatisch. Der Grund dafür liegt an der hohen Homologie zwischen den β-Tubulinen des Parasiten und des Menschen, welche die Zielproteine von Benzimidazolen sind. Um die Nebenwirkungen für den Patienten gering zu halten, werden die Benzimidazole nur in Konzentrationen verabreicht, die parasitostatisch wirken, was zu keiner Abtötung des Parasitengewebes führt. Darüber hinaus sind die gegenwärtigen AE-Medikamente nicht wirksam gegen die germinativen Zellen des Parasiten, was zu einem Wiederauftreten des Wachstums von Parasitengewebe führt, sobald die Chemotherapie unterbrochen wird. Die hier vorliegende Arbeit konzentriert sich auf die Entwicklung eines neuen chemotherapeutischen Ansatzes gegen AE und befasst sich mit Proteinkinasen, die einen wesentlichen Einfluss auf die Proliferation und die Differenzierung von Zellen des Parasiten haben. Proteinkinasen, die in direkten Zusammenhang mit den Zellzyklus stehen, sind beispielsweise die Polo-like kinasen (Plk), welche die Bildung von mitotischen Spindelfasern während der M-Phase regulieren. Wie bereits in vorhergehenden Studien gezeigt werden konnte, sind Plks auch an der Entstehung von Krebs beteiligt und daher interessante Ansatzpunkte für die Entwicklung von neuen Chemotherapeutika. Darüber hinaus zeigte sich auch, dass Sie zur Chemotherapie von parasitären Krankheiten Verwendung finden könnten, wie zur Behandlung von Schistosomiasis, welche durch Schistosoma mansoni ausgelöst wird. Der erste Teil dieser Arbeit befasst sich mit der Charakterisierung der Polo-like kinase 1 (Plk1) aus E. multilocularis, die Homologien zur humanen Plk1 und der aus S. mansoni (SmPlk1) aufweist und daher als Ansatzpunkt für eine neuartige chemotherapeutische Behandlung von AE angesehen werden kann. Es konnte gezeigt werden, dass EmPlk1 in germinativen Zellen (Stammzellen) des Parasiten stark exprimiert wird und das es möglich ist, dieses orthologe Protein mit nanomolekularer Konzentration (25 nM) des Plk1 Inhibitors BI 2536 in seiner zellulären Funktion zu hemmen. Darüber hinaus führt die Behandlung in vitro zu einem Verlust von Stammzellen im Larvenstadium von E. multilocularis, was zu einer drastischen Verminderung des Wachstums und der Entwicklung des Parasiten führt. Des Weiteren konnte sehr deutlich gezeigt werden, dass bei Verwendung des Inhibitors BI 2536 in Zellkultursystemen mit „Primärzellen“ (80% Stammzellen) des Parasiten diese nicht mit mehr in der Lage sind in Metacestoden zu regenerieren. Dabei ist entscheidend, dass die verwendeten Konzentrationen des Inhibitors BI 2536 innerhalb der gemessenen Plasmakonzentrationen von Krebspatienten liegen (50 nM nach 48 Stunden). Die Inhibierung der Plk1 wird daher als vielversprechender neuer Ansatzpunkt einer Chemotherapie zur Behandlung der AE angesehen. Die Inhibierung der EmPlk1 hat einen wesentlichen Einfluss auf die Differenzierung von Stammzellen des Parasiten, wodurch das Wachstum und die weitere Entwicklung des Parasiten gehemmt werden. Des Weiteren kann neben der chemotherapeutischen Behandlung der Inhibitor BI2536 auch für das weitere Studium von Stammzellen und deren zelluläre Funktion in E. multilocularis genutzt werden. Dafür wurden erste in vitro Experimente mittels Injektion in stammzellfreie Metacestoden Vesikel durchgeführt. Der zweite Teil dieser Arbeit befasst sich mit einem neuen Transmembranrezeptor in E. multilocularis, der hier als Venus-Fliegenfallen-Rezeptor charakterisiert wird. Dieser Rezeptortyp wurde erst kürzlich in S. mansoni beschrieben und steht im Zusammenhang mit der Entwicklung und dem Wachstum von Keimzellen des Parasiten. Der Rezeptor weist eine ungewöhnliche Zusammensetzung aus einer extrazellulären Venusfliegenfallendomäne (VFT) mit starker Ähnlichkeit zu GABA Rezeptoren auf (γ-amino-Buttersäure Typ B) und ist über eine einzelne Transmembrandomäne mit einer intrazellulären Tyrosinkinasedomäne verbunden, die eine hohe Homologie zu humanen Insulinrezeptoren zeigt. Der lange Genabschnitt (5112bp) von emvkr mit sequenzspezifischen Eigenschaften war schwierig zu klonieren, um eine anschließende Expression in Xenopus Oozyten durchzuführen. Bisher wurde dieser Rezeptor nur in Invertebraten beschrieben und stellt somit einen interessanten Ansatzpunkt für die Entwicklung von neuen Chemotherapeutika dar. In einem ersten Versuch wurde die Wirkung des ATP-Kompetitive Inhibitors AG 1024 in unserer in vitro Zellkultur untersucht. Zusammenfassend wurde die Relevanz von EmVKR als neuartiger Tyrosinkinaserezeptor in E. multilocularis verdeutlicht. In anschließenden Studien sollte die Aktivierung durch Ligandenbindung an den Rezeptor, sowie seine weitere zelluläre Funktion untersucht werden. Diese Erkenntnisse könnten dann eine entscheidende Rolle für die Entwicklung von neuen Medikamenten mit EmVKR spielen. Des Weiteren wurde die erfolgreiche Entfernung von Stammzellen aus Metacestoden Vesikel mit dem Plk1 Inhibitor BI 2536 gezeigt. Dies bietet nun die Option diesen Inhibitor auf das Wirkstoffziel EmPlk1 weiter zu optimieren. Darüber hinaus hat die Verwendung dieses Inhibitors den entscheidenden Zugang für eine neue Zellkulturtechnik ermöglicht, die das Studieren von Stammzellen und deren Einflussfaktoren in vitro bietet.
9

Targeting flatworm signaling cascades for the development of novel anthelminthic drugs

Gelmedin, Verena Magdalena January 2008 (has links)
Würzburg, Univ., Diss., 2009. / Zsfassung in dt. Sprache.
10

Molekulare Charakterisierung von Mitogen-activated Protein Kinase (MAPK)- Komponenten aus \(Echinococcus\) \(multilocularis\) / Molecular characterization of mitogen-activated protein kinase (MAPK) components from \(Echinococcus\) \(multilocularis\)

Stoll, Kristin January 2021 (has links) (PDF)
Die alveoläre Echinokokkose (AE), verursacht durch das Metacestoden- Larvenstadium des Fuchsbandwurms Echinococcus multilocularis (E. multilocularis), ist eine lebensbedrohliche Zoonose der nördlichen Hemisphäre mit eingeschränkten therapeutischen Möglichkeiten. Bei der Suche nach neuen Therapeutika haben Mitogen-activated Proteinkinase (MAPK) -Kaskaden als pharmakologische Zielstrukturen aufgrund ihrer essentiellen Rolle bei der Zellproliferation und -differenzierung ein großes Potenzial. In der vorliegenden Arbeit wurden durch BLAST- und reziproke BLAST-Analysen elf potenzielle MAPK Kinase Kinasen (MAP3K), fünf potenzielle MAPK Kinasen (MAP2K) und sechs potenzielle MAPK im E. multilocularis-Genom identifiziert, die teils hoch konserviert sind und in nahezu allen Entwicklungsstadien des Parasiten exprimiert werden. Diese Erkenntnisse lassen auf ein komplexes MAPK-Signaltransduktions- system in E. multilocularis mit großer Bedeutung für den Parasiten schließen. Transkriptomdatenanalysen und Whole Mount in Situ Hybridisierung (WMISH) zeigten, dass emmkkk1 (EmuJ_000389600) als einzige MAP3K neben der Expression in postmitotischen Zellen in besonderem Maße in proliferativen Stammzellen des Parasiten exprimiert wird und somit eine wichtige Rolle bei der Differenzierung von Stammzellen spielen könnte. In Yeast-Two-Hybrid (Y2H) -Wechselwirkungsassays wurden Interaktionen von mehreren upstream- (EmGRB2) und downstream- wirkenden Signalkaskadekomponenten des JNK (EmMKK3, EmMPK3) und ERK (EmMKK3, EmMPK4) -Signalwegs gefunden. Daraus lässt sich schließen, dass EmMKKK1, analog zu seinem humanen Homolog HsM3K1, eine zentrale Rolle bei der Echinococcus-Wachstumsregulation durch Rezeptortyrosinkinasen und vielfältige weitere Funktionen im Parasiten besitzt. Anhand von Erkenntnissen an Platyhelminthes kann daher von einem großen Potenzial dieser neu charakterisierten Signalwege als chemotherapeutische Angriffspunkte ausgegangen werden, wenngleich erste RNA-Interferenz (RNAi)- und Inhibitorstudien an emmkkk1, emmpk1 und emmpk4 keine durchschlagenden Effekte auf das Überleben von Primärzellkulturen und die Bildung von Metacestodenvesikeln zeigten. Zusammenfassend konnte in der vorliegenden Arbeit mit EmMKKK1 und neuen ERK- und JNK-Signalwegen zentrale Komponenten der komplexen MAPK-Signalkaskaden in E. multilocularis identifiziert werden, die höchstwahrscheinlich einen großen Beitrag zur enormen Regenerationsfähigkeit der Echinococcus-Stammzellen leisten und vom Wirt abgeleitete Signale wie Insulin, Epidermaler Wachstumsfaktor (EGF) und Fibroblasten-Wachstumsfaktor (FGF) über EmGRB2 in Proliferationsnetzwerke des Parasiten integrieren. Arzneimittel-Screening-Assays, die auf diese Signalwege abzielen, könnten daher zu alternativen Arzneimitteln führen, die alleine oder in Kombination mit einer bestehenden Chemotherapie (Benzimidazol) die Prognose von für AE-Patienten verbessern könnten. / Alveolar echinococcosis (AE), caused by the metacestode larval stage of the fox tapeworm Echinococcus multilocularis (E. multilocularis), is a life-threatening zoonosis of the Northern Hemisphere with limited therapeutic options. In searches for a new chemotherapy, mitogen-activated protein kinase (MAPK) cascades are of great potential as new drug targets due to their essential role in cell proliferation and differentiation. In this work eleven potential MAPK kinase kinases (MAP3K), five potential MAPK kinases (MAP2K) and six potential MAPK were identified in the E. multilocularis genome by BLAST and reciprocal BLAST analyses, of which some are highly conserved and expressed in almost all developmental stages of the parasite. These findings suggest a complex MAPK signal transduction system in E. multilocularis with major importance for the parasite. Transcriptome data analysis and Whole Mount in Situ Hybridization (WMISH) showed that emmkkk1 (EmuJ_000389600) is the only MAP3K being decisively expressed in the proliferative parasite in addition to expression in postmitotic cells, and thus could play an important role in the differentiation of stem cells. In Yeast-Two-Hybrid (Y2H) interaction assays, interactions between several upstream (EmGRB2) and downstream signaling cascade components of JNK (EmMKK3, EmMPK3) and ERK (EmMKK3, EmMPK4) signaling pathways were detected. Thus, EmMKKK1, like its human homologue HsM3K1, appears to play a central role in Echinococcus growth regulation by receptor tyrosine kinases and seems to have diverse other functions in the parasite. Based on findings on other platyhelminths it can be expected that these newly characterized signaling pathways are of great potential as drug target, although first RNA interference (RNAi) and inhibitor studies on emmkkk1, emmpk1 and emmpk4 revealed no substantive effects on the survival of primary cell cultures and the formation of metacestode vesicles. In conclusion, the present work identified with EmMKKK1 and new ERK and JNK signaling pathways central components of the complex MAPK signaling cascades in E. multilocularis, which most likely contribute to the enormous regenerative capacity of Echinococcus stem cells and integrate host derived signals such as insulin, epidermal growth factor (EGF), and fibroblast growth factor (FGF) via EmGBR2 into proliferative networks of the parasite. Targeting these signaling pathways in drug screening assays might thus lead to alternative drugs that alone, or in combination with existing chemotherapy (benzimidazole), could improve the prognose of AE patients.

Page generated in 0.0424 seconds