Spelling suggestions: "subject:"fuel combustion"" "subject:"fuel ombustion""
1 |
Fuel composition and vaporization effects on combustion chamber depositsDeYoung, Richard E. January 1981 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1981. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 207-208).
|
2 |
A fundamental study of the oxidation behavior of SI primary reference fuels with propionaldehyde and DTBP as an additive /Johnson, Rodney. Miller, David L. Cernansky, N. P. January 2008 (has links)
Thesis (Ph.D.)--Drexel University, 2008. / Includes abstract and vita. Includes bibliographical references (leaves 130-135).
|
3 |
The co-combustion performance of South African coal and refuse derived fuelIsaac, Kerina 11 1900 (has links)
School of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, South Africa, in fulfillment of the requirements for the degree of Master of Science in Engineering, November 2019 / This research focuses on the co-firing of low-quality coal with refuse derived fuel (RDF) as a means to utilise some of the abundant high-ash coal available in South Africa as a fuel co-fired with RDF in existing pulverised fuel boilers. The use of RDF is also a means to reduce the volume of waste dumped in landfill sites. The physicochemical characteristics of the RDF, run of mine coal (ROM) and discard coal were investigated, along with the co-combustion behaviour and kinetics of the RDFs, coal and their blends at different weight ratios. The blends tested contained 85%, 70%, 50% and 25% coal with the remaining proportion made up of RDF. The gaseous emissions and ash residue from the combustion of coal, RDF and coal/RDF blends were also analysed to determine the environmental impact of co-firing with RDF.
The physicochemical analysis revealed that the run-of-mine and discard coal have relatively low calorific values of 21.7 MJ/kg and 16.7 MJ/kg, respectively. The RDF samples were comprised of plastic and paper, as well as smaller amounts of other materials. The RDF sample containing mostly plastic (PL) and the other containing mostly paper (PB) were found to have higher energy contents of 31.2 MJ/kg and 22.4 MJ/kg, respectively. The thermogravimetric analysis was performed in an atmosphere of air, over a temperature range of 25 – 850°C, and the results showed that the RDF samples had lower ignition, devolatilisation, and burnout temperatures compared to the coals. The ignition temperatures for the blended fuel occurs in the lower temperature region when RDF is added to the blend, likewise the peak temperatures and burnout temperatures shifted to a lower temperature zone. The activation energies (Ea) were determined using the Coats-Redfern method. The Ea for the ROM coal of 104.4 kJ/mol, was found to reduce to 31.4 kJ/mol for 75% PB + 25% coal and 35 kJ/mol for 75% PL + 25% coal blends, respectively. The discard coal which had an Ea of 109.9 kJ/mol was reduced to 30.9 kJ/mol with the (paper blend) and 33.5 kJ/mol with the (plastic blend) for the 75% RDF + 25% coal discard blends.
The analysis of the ash for the chloride and alkali metal content in the RDFs, coal samples and their blends were determined with the use of ion chromatography and X-ray fluorescence (XRF) techniques. The co-combustion ash of discard coal and RDF showed a decrease in chloride and alkali metal content as the ratio of coal was increased in the blend. The calculated slagging and fouling indices showed that as the coal ratio in the blend increases, the propensity of the fuel to slag and foul the boiler surfaces decreases. The propensity to slag
was found to be low for the ash obtained from the co-fired blends, while the propensity to foul decreased from high to medium range for all the blends with less than 75% of the RDF PB. The concentration of gases emitted from the combustion and co-combustion test was determined with the aid of an MGA 11 mobile gas analyzer connected online at 1 scan per second. The co-combustion of RDF with coal showed a decrease in SO2 emissions from (387 ppm) for the discard coal to within the legislated maximum emission for South African new coal fired plants. This was attained with samples containing ˃ 15% PL and ˃ 30% PB RDF. The lowest SO2 emission of 50 ppm was achieved for the blend of 25% discard coal (C2) + 75% PL. The RDF sample (PL) emitted the highest NOx emission of 143 ppm. The peak concentration of NOx emitted was increased with the addition of RDF during co-combustion, however, the duration of the emission was greatly reduced and all samples were within the South African standard limits. There was also an increase in the emissions of CO and CO2 which could be due to the high volatile matter content of the RDF. The lowest CO2 emissions was 6000 ppm and this was achieved with the blend of 85% C2 + 15% PB. It was established in this study that the most favourable fuel blend that could be used for power generation is that of discard coal (70%) and PL (30%). This was based on the activation energy obtained from this blend, with the lowest apparent activation energies of 55.8 kJ/mol and 54.2 kJ/mol for the volatile and char combustion, respectively. This makes this blend the preferred alternative fuel to be fired in the existing pulverised fuel boilers, or other type of industrial boilers, in South Africa. / PH2020
|
4 |
CFD modelling of the flow through a 4 valve I.C engine with late intake valve closureBokhary, Ahmad Y. F. January 1998 (has links)
No description available.
|
5 |
I: On the propagation of large disturbances in a gas. II: On the combustion of oil ...Theodorsen, Theodore, January 1929 (has links)
Thesis (Ph. D.)--Johns Hopkins University, 1929. / Each part has special t.p. Biography.
|
6 |
Advanced control of an industrial circulating fluidized bed boiler using fuzzy logicKarppanen, E. (Erkki) 10 January 2000 (has links)
Abstract
Circulating Fluidized Bed (CFB) boilers are widely used for multi-fuel
combustion of waste and bio-fuels. When several non-homogeneous fuels, having varying heat values, are
burned simultaneously, the boiler control system can be affected by various control
challenges, especially since it is not feasible to reliably measure the energy content of the
multi-fuel flow. In order to fulfill energy production needs and maintain the ability to burn low grade
fuels, co-firing with high heat value fuels such as gas, oil or coal is needed.
Fuzzy Logic Control (FLC) has been successfully used for solving control
challenges, where operators' process expertise can be transformed into automation. Real life
control objects are often non-linear because the dynamics change with the operating point, or there might
be other essential non-linearities in the combustion process.
The proposed fuzzy control applications were developed to solve control
challenges the operators meet in daily operation of a 150 MW(th) CFB at Varenso Oy's (Stora
Enso Oyj) K6 boiler in Varkaus Finland. Before implementing the applications in the fullscale
boiler, they were tested at a 2 MW(e) pilot plant boiler at Foster Wheeler Energia Oy's Research
Center in Karhula, Finland.
According to the industrial experiments, the four applications (steam pressure
control, compensation of fuel quality fluctuation, fuel-feed optimization and increased
bed inventory monitoring) discussed in this thesis, showed satisfactory performance and
various improvements to the boiler control were achieved. Fuzzy logic control was shown to be a notable
tool to improve the multi-fuel CFB boiler control.
|
7 |
Process parameters and conditions for batch production of eco-fuel briquettesPilusa, Tsietsi Jefrey 04 September 2012 (has links)
M.Tech. / In this work, eco-fuel briquettes made from a mixture of 32% spent coffee grounds, 23% coal fines, 11% saw dust, 18% mielie husks, 10% waste paper and 6% paper pulp contaminated water, respectively were investigated. Various processing stages such as briquetting, drying, combustion and flue gas emissions were investigated in order to evaluate the socio-economic viability of the batch production of eco-fuel briquettes from biomass waste material. Each stage was studied independently in order to develop basic models that contained material and energy balances. A screw press briquetting machine was designed and fabricated as part of this work to be tested against the legacy foundation Porta press, and the Bikernmayer hand brick press. The compaction of the biomass waste material into briquettes follows the principle of physical interlocking of the fine particles within the plant fibres, natural material binding due to released cellulose content, as well as reduction in porosity, due to a simultaneous dewatering and compaction action. The processing variables such as cycle times and pressure were studied. The Bikernmayer press is preferred as it produced briquettes of higher bulk densities and lower moisture content as compared to the other presses. The drying was investigated in a laboratory scale convective dryer to establish typical convection parameters. A drying system that utilizes produced briquettes as a heating medium is proposed, and here drying will be effected over a refractory brick fireplace by means of convection and radiation. A basic model was set up to include radiation with the convection to predict a drying time of 4.8 hours. The combustion of briquettes was investigated using a POCA ceramic stove linked to the testo Portable Emission Analyzer System. This enabled an air-to-fuel ratio of 1.44 and a burning rate of 2g per minute to be established. The energy transfer efficiency for boiling a pot of water was found to be 85%. The gas emissions were found to be within the acceptable limits, as set out by OSHA. A standard initial economic evaluation was performed based on a briquette selling price of R2.26 per kilogram for the ease of accommodating the local market. The financial model for both Porta press and screw press were not economically viable, as their running costs were greater than the gross project revenues. For the Bikernmayer conceptual model, with a total capital investment of R669, 981+ VAT (this includes one year operating cost) and a project life of five years, the gross Process parameters and conditions batch production of eco-fuel briquettes profit margin is 44%, the profitability index is 5.33 and the internal Rate of return 31.44%. The net present value and return period are R676, 896 and 0.408 years respectively. The customer profile as currently at hand is 17% of the selected area within 80 m radius from production site. The remaining 83% will be in need of energy as they become aware of the new product offering. The selling of the briquettes should be accompanied by an education process, to avoid the dangers of heating indoors. The principal driver for this project is socio economic development and it is being strengthened by Eskom’s inability to provide sufficient energy. A secondary driver is the global drive to reduce emissions and fossil fuel usage; this technology does exactly this whilst diverting waste from landfill. In the Polokwane declaration (2008), it is stated that South Africa will have no calorific waste to landfill by 2014. Hence legislation will also provide a major part of the drive.
|
8 |
Testing and evaluating the combustion characteristics of waste fuelsCanova, Joseph H. 08 May 1992 (has links)
Effective combustion of waste fuels requires an
understanding of the fuels characteristics. Gaseous and
particulate emissions, ash residues and combustion
properties are of interest to many; those that produce and
sell heating units, utilities interested in using the fuels
for power generation, regulatory agencies, municipalities
needing to solve a disposal problem, and environmentally
conscious people interested in maximum utilization of
resources.
A study was conducted at Oregon State University to
test and evaluate the use of two types of waste: mixed
waste paper (MWP) and refuse derived fuel (RDF). Wood
biomass (ponderosa pine) was used as a benchmark and also
cofired with MWP. Samples collected from the Pacific
Northwest were tested for physical, chemical, combustion,
and emission characteristics.
Raw fuel samples were tested for moisture content and
bulk density. The samples were then shredded and
pelletized. Pelletized fuels were tested for ultimate and
proximate analyses, ash fusion temperature, elemental ash
analysis, higher heating value, moisture content, bulk
density, and pellet durability.
Using an existing biomass combustion facility, the
samples were fired to determine the optimum thermodynamic
conversion combustion condition for each fuel.
Observations were made of physical problems associated with
firing of the samples. Combustion products were
continuously monitored for temperature and composition with
a combustion analyzer. An EPA Method 5 sampling train was
used to determine particulate, heavy metals, chloride,
fluoride, and sulfate emissions. Leachate testing was
performed on the bottom ash residue to determine heavy
metal concentrations.
Waste fuels provided a challenge for combustion study
in a biomass combustion unit. Modifications were required
to alleviate high ash content problems. Observations of
corrosion and clinkers provided another comparison for fuel
evaluation. Comparison of emissions resulting from
different fuel types provided good practical information
for industrial purposes. Observed trends indicated
possible minimization of emissions corresponding to optimum
thermodynamic conversion. Cofiring analysis revealed
possible increases and decreases of heavy metal emissions
for MWP and wood. / Graduation date: 1992
|
9 |
Self-sustained combustion of low grade solid fuels in a stagnation-point reverse-flow combustorRadhakrishnan, Arun 13 January 2014 (has links)
This thesis investigates the use of the Stagnation-Point Reverse-Flow (SPRF) combustor geometry for burning low-grade solid fuels that are attractive for specific industrial applications because of their low cost and on-site availability. These fuels are in general, hard to burn, either because of high moisture and impurity-content, e.g. biomass, or their low-volatiles content, e.g., petroleum-coke. This results in various challenges to the combustor designer, for example reduced flame stability and poor combustion efficiency. Conventional solutions include preheating the incoming flow as well as co-firing with high-grade fuels. The SPRF combustor geometry has been chosen because it was demonstrated to operate stably on standard gaseous and liquid-fuels corresponding to ultra fuel-lean conditions and power densities at atmospheric-pressure around 20-25 MW/m3. Previous studies on the SPRF combustor have proven that the unique, reverse flow-geometry allows entrainment of near-adiabatic products into the incoming reactants, thereby enhancing the reactivity of the mixture. Further, the presence of the stagnation-end created a region of low mean velocities and high levels of unsteadiness and mixing-rates that supported the reaction-zones. In this study, we examine the performance of the SPRF geometry on a specific low grade solid fuel, petroleum coke.
There are three main goals of this thesis. The first goal is the design of a SPRF combustor to operate on solid-fuels based on a design-scaling methodology, as well as demonstration of successful operation corresponding to a baseline condition. The second goal involves understanding the mode of operation of the SPRF combustor on solid-fuels based on visualization studies. The third goal of this thesis is developing and using reduced-order models to better understand and predict the ignition and quasi-steady burning behavior of dispersed-phase particles in the SPRF combustor.
The SPRF combustor has been demonstrated to operate stably on pure-oxygen and a slurry made from water and petroleum-coke, both at the baseline conditions (125 kW, 18 g/s, ~25 µm particles) and higher power-densities and powder sizes. For an overall combustor length less than a meter, combustion is not complete (global combustion efficiency less than 70%). Luminance imaging results indicate the incoming reactant jet ignites and exhibits intense burning at the mid-combustor region, around 15 jet diameters downstream of the inlet, most likely due to enhanced mixing as a result of the highly unsteady velocity field. This roughly corresponds to the location of the reaction zones in the previous SPRF combustors operating on gas and liquid fuels. Planar laser visualization of the reacting flow-field using particle-scattering reveals that ignition of a significant amount of the reactants occurs only after the incoming jet has broken into reactant packets. Post-ignition, these burning packets burn out slowly as they reverse direction and exit the combustor on either side of the central injector. This is unlike the behavior in liquid and gas-fueled operation where the incoming reactants burned across a highly corrugated, thin-flame front. Based on these findings, as well as the results of previous SPRF studies, an idealized model of combustor operation based on a plug flow reactor has been developed. The predictions suggest that fuel-conversion efficiency is enhanced by the combustor operating pressure and lowered by the heat-losses.
Overall, this effort has shown the SPRF geometry is a promising compact-combustor concept for self-sustained operation on low-grade solid-fuels for typical high-pressure applications such as direct steam-generation. Based on these findings, it is recommended that future designs for the specific application previously mentioned have a shorter base-combustor with lower heat-losses and a longer steam-generation section for injection of water.
|
10 |
Etude thermodynamique des équilibres liquide-vapeur des systèmes complexes CO2-eau-impuretés à haute pression. Expérimentation et modélisation. / Thermodynamic study of vapour liquid equilibria in the carbon dioxide-water-impurities system at high pressure. Measurement and modelling.Lucile, Floriane 31 October 2012 (has links)
Le dioxyde de carbone, provenant de la combustion d’énergies fossiles, est l’un plus important gaz à effet de serre. La réduction des émissions de CO2 à l’atmosphère s’imposant, une solution consiste en la capture et la séquestration du CO2 par oxy-combustion. Avant l’étape de séquestration, le CO2 doit être purifié. Les procédés de séparation des gaz nécessitent une bonne connaissance des propriétés thermodynamiques des équilibres entre phases. C’est pourquoi un nouvel appareil expérimental, permettant l’étude de la solubilité d’un mélange de gaz (CO2, O2, NOx, SO2) dans des solutions aqueuses, a été développé. Dans un premier temps, l’étude du système CO2-eau a permis de valider l’appareil expérimental pour les domaines de température et de pression de l’étude (293 ,15-393,15 K, jusqu’à 5 MPa). Ensuite, les données sur le système CO2-eau-NaOH étant rares dans la littérature, ce système a été étudié. Les données expérimentales obtenues ont été comparées à un modèle développé dans l’étude. Les modèles de coefficient d’activité de Pitzer et de NRTL électrolyte sont comparés. La dernière étape de l’étude est l’optimisation des paramètres du modèle NRTL-e par ajustement sur les données expérimentales. / Production of carbon dioxide from burning fossil fuel participates in the global warming. This issue generates a growing interest for CO2 capture and storage from oxy fuel combustion. Before the sequestration step, the CO2 has to be purified from impurities. Separation processes require a good knowledge of thermodynamics properties of phase equilibria. In this context a new experimental device was designed and set up in the LaTEP to allow the study of the solubility of gas mixture involved in CO2 capture and storage processes (CO2, O2, NOx, SO2). The apparatus was, first, validated by studying the CO2-water system in the temperature range from 293.15 K to 393.15 K and at pressure up to 5 MPa. Then, the CO2-water-NaOH was studied because few data are available in the scientific literature. Experimental data obtained was compared with a model developed in this work. This model is based on a thermodynamic description of physical chemical phenomena occuring in a vapour liquid system. Two model of activity coefficient are compared (Pitzer and electrolyte-NRTL). The last step of this study is the parameter optimization for e-NRTL.
|
Page generated in 0.0892 seconds