• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 554
  • 142
  • 61
  • 43
  • 24
  • 12
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 1244
  • 1244
  • 314
  • 305
  • 201
  • 194
  • 185
  • 156
  • 143
  • 132
  • 117
  • 112
  • 109
  • 100
  • 99
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Aproveitamento de etanol em células a combustível: eletrocatálise da reação de oxidação direta e da oxidação do hidrogênio contaminado por CO obtido por sua reforma / Use of ethanol in fuel cells: electrocatalysis of its direct oxidation reaction and of the hydrogen oxidation reaction containing CO obtained by its steam reform

Lopes, Pietro Papa 30 April 2013 (has links)
Este trabalho compreende estudos das reações de oxidação de hidrogênio na presença de CO em células unitárias do tipo Membrana Trocadora de Prótons e da reação de oxidação de álcoois em meio alcalino em superfícies monocristalinas. Estes dois temas têm como base a utilização de etanol como vetor energético renovável para o uso em dispositivos eletroquímicos conversores de energia, como as células a combustível. O estudo do efeito de temperatura sobre a tolerância ao CO durante a reação de oxidação de hidrogênio foi abordado sob a perspectiva dos diferentes processos de tolerância que ocorrem em materiais de Pt/C, PtRu/C e PtMo/C. Assim, foram utilizadas as técnicas de Microscopia Eletrônica por Transmissão, Espectroscopia por Dispersão de Energia de Raios X, Espectroscopia Fotoeletrônica por Raios X, Difração de Raios X e Espectroscopia de Absorção de Raios X in situ para a caracterização da composição química, estrutura cristalina e de ocupação eletrônica, ressaltando-se o desenvolvimento de uma célula espectro-eletroquímica com o propósito de obter a informação de XAS em um ambiente real de operação da célula, que permite avaliar o efeito da temperatura e do ambiente químico. Estes resultados foram analisados em conjunto com os perfis de polarização anódica, observando-se que o efeito da temperatura opera de maneira distinta sobre os diferentes processos de tolerância ao CO. Uma análise baseada no mecanismo de reação permitiu estimar os recobrimentos experimentais das espécies de H, CO e OH, essencial para compreender os processos que ocorrem nos ânodos de uma PEMFC alimentada com H2/CO. Por outro lado, os estudos da reação de oxidação de etanol em meio alcalino possibilitaram obter informações fundamentais para o entendimento do mecanismo da reação para este e outros álcoois. Este trabalho compreendeu a avaliação do efeito do cátion alcalino sobre a cinética de reação de oxidação de vários álcoois, em destaque no papel da acidez do álcool em conjunto com a presença de Li no efeito eletrocatalítico. Além de observar o papel da acidez dos álcoois e do solvente para a possível promoção do efeito catalítico decorrente de interações não-covalentes, este estudo possibilitou uma ampla análise baseada nas propriedades moleculares dos diferentes álcoois, calculadas por Teoria do Funcional da Densidade. Desta forma foi possível estabelecer uma correlação entre as propriedades dos orbitais de fronteira com a porção da molécula do álcool que irá reagir primeiro, além da diferença de energia entre o Highest Occupied Molecular Orbital - Lowest Unoccupied Molecular Orbital servir de descritor da reatividade sobre uma dada superfície. Foi identificado o papel da oxofilicidade do metal, verificando-se a existência de uma relação próxima entre a adsorção de OH e a de álcool. Por fim, resultados de caracterização do produto da reação por Espectroscopia no Infravermelho, em conjunto com as informações obtidas dos demais estudos, possibilitou propor um mecanismo da reação de oxidação aplicável a diversos álcoois. / This work comprises studies of the hydrogen oxidation reaction in the presence of CO in a Proton Exchange Membrane single-cells and the alcohol oxidation reaction in alkaline media on single crystal surfaces. These two themes are based on the use of ethanol as a renewable energy vector in electrochemical energy conversion devices, like fuel cells. The study of the effect of temperature over the CO tolerance during the hydrogen oxidation reaction was tackled with the perspective of the distinct tolerance processes that take place in Pt/C, PtRu/C and PtMo/C materials. Therefore, techniques such as Transmission Electron Microscopy, Energy Dispersive X-ray Spectroscopy, X-ray Diffraction and in situ X-ray Absorption Spectroscopy were employed to characterize the catalysts chemical composition, crystalline structure and electronic occupancy, highlighting the development of a spectro-electrochemical cell with the purpose of obtaining the XAS information under a real operando fuel cell environment, thus allowing evaluations of the effects of temperature and distinct chemical environments. These results were analyzed along with anode polarization profiles, so to emphasize the distinct way that the temperature affects each CO tolerance process. A reaction mechanism analysis allowed estimating the H, CO and OH surface coverages, which are paramount to best understand the processes that take place in PEMFC anodes fed with H2/CO. On the other hand, the ethanol oxidation studies in alkaline media allowed obtaining fundamental information to understand the ethanol oxidation reaction mechanism. These studies comprised the evaluation of the alkali cation effect over the alcohol oxidation reaction kinetics, bringing to light the role of alcohol acidity together with Li to enhance the catalytic effect. Besides observing the acidity role of both alcohol and solvent towards the catalytic promotion resulting from non-covalent interactions, this study allowed a broader analysis based on the molecular properties of distinct alcohols, as calculated by Density Functional Theory. In this way, it was possible to establish a correlation between frontier orbital properties with the portion of the alcohol molecule reacting first, along with the identification of the Highest Occupied Molecular Orbital - Lowest Unoccupied Molecular Orbital energy difference serving as a reactivity descriptor over a given surface. The role of the metal surface oxophilicity was identified, and this evidenced a close relation between OH and alcohol adsorption properties. At last, results obtained from Infrared Spectroscopy so to identify the oxidation products were combined with the information gained from the other studies allowed to elaborate a mechanism for the alcohol oxidation reaction applicable to several distinct alcohols.
352

Preparação de ligas binárias e ternárias de Pt, W e Os para a oxidação de metanol em células a combustível de baixa temperatura / Preparation of Pt, W e Os binary and tertiary alloys for the oxidation of methanol in low temperatures fuel cells

Érica de Camargo Bortholin 25 January 2007 (has links)
A sociedade moderna depende integralmente da produção e consumo de energia em seu dia a dia desde cozinhar, ter energia elétrica, transporte, e para processos industriais. O aumento da demanda de energia elevou também os níveis de poluição, o que produz efeitos diretos na saúde do homem. Desta forma, o homem tem que pesquisar novas formas de energia, que em condições ideais, deve ser gerada de forma limpa. Uma alternativa para que se possa enfrentar este problema é a conversão eletroquímica de energia, a qual pode ser realizada de forma eficiente e limpa através das células a combustível. Existe um interesse muito grande em células que oxidam metanol como combustível, para a aplicação em veículos e equipamentos portáteis. No entanto, para se implementar estas células, é necessário um grande progresso na caracterização dos fenômenos eletródicos associados a esta reação, tanto em nível fundamental quanto tecnológico. No presente trabalho foram desenvolvidos catalisadores de PtW, PtOs, PtRuW, PtWOs, suportados em carbono de alta área superficial, para a oxidação de metanol. Os catalisadores foram preparados através da redução por ácido fórmico e através do método de Bonnëmann. As composições dos materiais foram determinadas por EDX. O tamanho médio das partículas foi obtido por TEM, e foi comparado ao tamanho médio dos cristalitos à partir dos difratogramas de raios X. Os estudos eletroquímicos foram realizados através de voltametrias cíclicas e curvas corrente potencial de estado estacionário utilizando-se a técnica do eletrodo de camada fina porosa. Foram feitas também medidas de EXAFS nos catalisadores mais promissores. Os catalisadores possuem atividade na faixa de potencial de interesse, e foram feitos alguns testes em células a combustível. / Modern society integrally depends on the production and consumption of energy for its activities like cooking, lighting and transportation and also for industrial processes. The increase in the demand for energy increases the levels of pollution, which has a direct negative effect in human health. Thus, it is imperative to search for new power sources which, under ideal conditions, do not pollute the environment. One of the alternatives to attack this problem is the electrochemical energy conversion of chemical energy into electricity which can be carried out in an efficient and clean way with fuel cells. Presently, there is a great interest in fuel cells that oxidize methanol directly, for application in vehicles, portable devices and distributed generation. To make these cells a reality it is still necessary much progress in the understanding of the electrodic phenomena associated to the oxidation of methanol, and in the development of suitable electrocatalysts, at both the fundamental and the technological levels. In this work, PtW; PtOs, PtRuW and PtWOs eletrocatalysts, supported on high surface area carbon, for the direct oxidation of methanol were developed. The catalysts were prepared by reduction with formic acid of the corresponding precursors and by Bonnëmann´s method. Their composition was determined by XRD. The average particle size was determined from TEM, and the results compared to crystallite sizes determined from x-ray diffractograms. The electrochemical studies were carried out with cyclic voltammetry and steady state polarization curves using the thin porous coating electrode technique. Some catalysts were also studied by the EXAFS technique. The catalysts prepared show activity in the potential region of interest, and some of then were tested in single fuel cells.
353

Investigation of GDH/laccase enzymes for bio-energy generation. / 研究葡萄糖脫氫酶及漆酶在生物能源系統的作用 / Yan jiu pu tao tang tuo qing mei ji qi mei zai sheng wu neng yuan xi tong de zuo yong

January 2009 (has links)
Chau, Long Ho. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 73-82). / Abstract also in Chinese. / ABSTRACT --- p.III / 摘要 --- p.IV / PUBLICATIONS CORRESPOND TO THIS THESIS --- p.V / ACKNOWLEDGEMENTS --- p.VI / TABLE OF CONTENTS --- p.VII / LIST OF FIGURES --- p.IX / LIST OF TABLES --- p.XI / ABBREVIATIONS AND NOTATIONS --- p.XII / Chapter CHAPTER 1 --- INTRODUCTION --- p.1 / Chapter 1.1 --- Background --- p.1 / Chapter 1.1.1 --- Types of Biofuel Cells --- p.1 / Chapter 1.1.2 --- Properties of Using Enzymes in Bio-energy Generation Systems --- p.2 / Chapter 1.1.3 --- Application of Bio-energy Generation Systems --- p.3 / Chapter 1.2 --- Objectives of the Project --- p.4 / Chapter 1.3 --- Organization of the Thesis --- p.5 / Chapter CHAPTER 2 --- LITERATURE REVIEW --- p.7 / Chapter 2.1 --- Working Principle of a Typical Fuel Cell --- p.7 / Chapter 2.2 --- Introduction of Enzymes and Co-enzymes --- p.9 / Chapter 2.3 --- Functions and Activities of Glucose Dehydrogenase (GDH) --- p.10 / Chapter 2.4 --- Functions and Activities of Laccase --- p.11 / Chapter 2.5 --- Introduction of Carbon Nanotubes (CNTs) --- p.12 / Chapter 2.6 --- Introduction of Gold Nanoparticles (AuNPs) --- p.13 / Chapter 2.7 --- Introduction of PdNPs --- p.14 / Chapter 2.8 --- Summary of Literature Review --- p.15 / Chapter CHAPTER 3 --- WORKING PRINCIPLE OF AN ENZYMATIC BIOFUEL CELL --- p.16 / Chapter 3.1 --- Enzymatic Biofuel Cell Using Glucose as a Fuel --- p.16 / Chapter 3.2 --- Deterministic Factors of the Fuel Cell´ةs Performance --- p.19 / Chapter 3.3 --- Energy --- p.22 / Chapter 3.3 --- Chapter Conclusion --- p.23 / Chapter CHAPTER 4 --- ENZYMATIC BIOFUEL CELL DESIGN --- p.24 / Chapter 4.1 --- Engineering Structure of the EBFC --- p.24 / Chapter 4.2 --- Chemical Structures of the EBFCs --- p.25 / Chapter 4.2.1 --- 1st Structure of EBFC - Au-Ll-CNTs-Ll-AuNPs-L2-{(GDH-NAD)/Laccase} --- p.26 / Chapter 4.2.2 --- 2nd Structure of EBFC - Au-Ll-CNTs-Ll-AuNPs-L2-{GDH/Laccase} --- p.28 / Chapter 4.2.3 --- 3rd Structure of EBFC- Pd-Ll-CNTs-Ll-AuNPs-L2-{(GDH-NAD)/Laccase} --- p.28 / Chapter 4.2.4 --- 4th Structure of EBFC - Pd-Ll -A uNPs-L2-{(GDH~NAD)/Laccase} --- p.29 / Chapter 4.2.5 --- 5th Structure of EBFC- Au-Ll-CNTs~L4'{(GDH-NAD)/Laccase} --- p.30 / Chapter 4.2.6 --- 6th Structure ofEBFC 一 Au-Ll-CNTs-{L3- NAD-GDH/L4-Laccase} --- p.31 / Chapter 4.3 --- Chapter Conclusion --- p.33 / Chapter CHAPTER 5 --- FABRICATION AND CHARACTERIZATION OF EBFCS --- p.34 / Chapter 5.1 --- Materials Preparation --- p.34 / Chapter 5.1.1 --- Preparation of Linker 1 --- p.34 / Chapter 5.1.2 --- Preparation of Linker 2 --- p.35 / Chapter 5.1.3 --- Preparation of Linker 4 --- p.35 / Chapter 5.1.4 --- Purification of Linkers --- p.35 / Chapter 5.1.5 --- Verification of Linkers --- p.36 / Chapter 5.2 --- 3-D Micro Electrode Fabrication --- p.37 / Chapter 5.3 --- Electrode Modification --- p.40 / Chapter 5.3.1 --- 1st Structure of EBFC --- p.40 / Chapter 5.3.2 --- 2nd Structure of EBFC --- p.41 / Chapter 5.3.3 --- 3rd Structure of EBFC --- p.41 / Chapter 5.3.4 --- 4th Structure of EBFC --- p.42 / Chapter 5.3.5 --- 5th Structure of EBFC --- p.42 / Chapter 5.3.6 --- 6th Structure of EBFC --- p.42 / Chapter 5.4 --- Characterization --- p.43 / Chapter 5.4.1 --- Atomic Force Microscopy (AFM) --- p.43 / Chapter 5.4.2 --- Scanning Electron Microscopy (SEM) & Energy-Disperse X-ray Spectroscopy (EDX) --- p.46 / Chapter 5.4.3 --- Cyclic Voltammetry (CV) --- p.47 / Chapter 5.5 --- Chapter Conclusion --- p.52 / Chapter CHAPTER 6 --- RESULTS OF EBFCS --- p.53 / Chapter 6.1 --- Experimental Setup --- p.53 / Chapter 6.2 --- Results --- p.55 / Chapter 6.2.1 --- Results of 1st EBFC --- p.55 / Chapter 6.2.2 --- Results of 2nd EBFC --- p.57 / Chapter 6.2.3 --- Results of 3rd EBFC --- p.58 / Chapter 6.2.4 --- Results of 4th EBFC --- p.60 / Chapter 6.2.5 --- Results of 5th EBFC --- p.60 / Chapter 6.2.6 --- Results of 6th EBFC --- p.65 / Chapter 6.3 --- Chapter Conclusion --- p.67 / Chapter CHAPTER 7 --- CONCLUSION --- p.69 / Chapter 7.1 --- Conclusion --- p.69 / Chapter 7.2 --- Future Work for the Biofuel Cell Project --- p.70 / Chapter 7.2.1 --- Study the Effect of Temperature Change --- p.70 / Chapter 7.2.2 --- Study the Effect of the Change of pH in Substrates --- p.70 / Chapter 7.2.3 --- Further Modified the Electrodes to Enhance the Output Power --- p.70 / APPENDIX --- p.71 / BIBLIOGRAPHY --- p.73
354

Control of Fuel Cells

Zenith, Federico January 2007 (has links)
<p>This thesis deals with control of fuel cells, focusing on high-temperature proton-exchange-membrane fuel cells.</p><p>Fuel cells are devices that convert the chemical energy of hydrogen, methanol or other chemical compounds directly into electricity, without combustion or thermal cycles. They are efficient, scalable and silent devices that can provide power to a wide variety of utilities, from portable electronics to vehicles, to nation-wide electric grids.</p><p>Whereas studies about the design of fuel cell systems and the electrochemical properties of their components abound in the open literature, there has been only a minor interest, albeit growing, in dynamics and control of fuel cells.</p><p>In the relatively small body of available literature, there are some apparently contradictory statements: sometimes the slow dynamics of fuel cells is claimed to present a control problem, whereas in other articles fuel cells are claimed to be easy to control and able to follow references that change very rapidly. These contradictions are mainly caused by differences in the sets of phenomena and dynamics that the authors decided to investigate, and also by how they formulated the control problem. For instance, there is little doubt that the temperature dynamics of a fuel cell can be slow, but users are not concerned with the cell’s temperature: power output is a much more important measure of performance.</p><p>Fuel cells are very multidisciplinary systems, where electrical engineering, electrochemistry, chemical engineering and materials science are all involved at various levels; it is therefore unsurprising that few researchers can master all of these branches, and that most of them will neglect or misinterpret phenomena they are unfamiliar with.</p><p>The ambition of this thesis is to consider the main phenomena influencing the dynamics of fuel cells, to properly define the control problem and suggest possible approaches and solutions to it.</p><p>This thesis will focus on a particular type of fuel cell, a variation of proton-exchange-membrane fuel cells with a membrane of polybenzimidazole instead of the usual, commercially available Nafion. The advantages of this particular type of fuel cells for control are particularly interesting, and stem from their operation at temperatures higher than those typical of Nafion-based cells: these new cells do not have any water-management issues, can remove more heat with their exhaust gases, and have better tolerance to poisons such as carbon monoxide.</p><p>The first part of this thesis will be concerned with defining and modelling the dynamic phenomena of interest. Indeed, a common mistake is to assume that fuel cells have a single dynamics: instead, many phenomena with radically different time scales concur to define a fuel-cell stack’s overall behaviour. The dynamics of interest are those of chemical engineering (heat and mass balances), of electrochemistry (diffusion in electrodes, electrochemical catalysis) and of electrical engineering (converters, inverters and electric motors). The first part of the thesis will first present some experimental results of importance for the electrochemical transient, and will then develop the equations required to model the four dynamic modes chosen to represent a fuel-cell system running on hydrogen and air at atmospheric pressure: cathodic overvoltage, hydrogen pressure in the anode, oxygen fraction in the cathode and stack temperature.</p><p>The second part will explore some of the possible approaches to control the power output from a fuel-cell stack. It has been attempted to produce a modularised set of controllers, one for each dynamics to control. It is a major point of the thesis, however, that the task of controlling a fuel cell is to be judged exclusively by its final result, that is power delivery: all other control loops, however independent, will have to be designed bearing that goal in mind.</p><p>The overvoltage, which corresponds nonlinearly to the rate of reaction, is controlled by operating a buck-boost DC/DC converter, which in turn is modelled and controlled with switching rules. Hydrogen pressure, being described by an unstable dynamic equation, requires feedback to be controlled. A controller with PI feedback and a feedforward part to improve performance is suggested. The oxygen fraction in the cathodic stream cannot be easily measured with a satisfactory bandwidth, but its dynamics is stable and disturbances can be measured quite precisely: it is therefore suggested to use a feedforward controller. Contrary to the most common approach for Nafion-based fuel cells, temperature is not controlled with a separate cooling loop: instead, the air flow is used to cool the fuel-cell stack. This significantly simplifies the stack design, operation and production cost. To control temperature, it is suggested to use a P controller, possibly with a feedforward component. Simulations show that this approach to stack cooling is feasible and poses no or few additional requirements on the air flow actuator that is necessary to control air composition in the cathode.</p>
355

Dynamic modeling and simulations of solid oxide fuel cells for grid-tied applications

Akkinapragada, Nagasmitha, January 2007 (has links) (PDF)
Thesis (M.S.)--University of Missouri--Rolla, 2007. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed April 17, 2007) Includes bibliographical references (p. 77-80).
356

Control of Fuel Cells

Zenith, Federico January 2007 (has links)
This thesis deals with control of fuel cells, focusing on high-temperature proton-exchange-membrane fuel cells. Fuel cells are devices that convert the chemical energy of hydrogen, methanol or other chemical compounds directly into electricity, without combustion or thermal cycles. They are efficient, scalable and silent devices that can provide power to a wide variety of utilities, from portable electronics to vehicles, to nation-wide electric grids. Whereas studies about the design of fuel cell systems and the electrochemical properties of their components abound in the open literature, there has been only a minor interest, albeit growing, in dynamics and control of fuel cells. In the relatively small body of available literature, there are some apparently contradictory statements: sometimes the slow dynamics of fuel cells is claimed to present a control problem, whereas in other articles fuel cells are claimed to be easy to control and able to follow references that change very rapidly. These contradictions are mainly caused by differences in the sets of phenomena and dynamics that the authors decided to investigate, and also by how they formulated the control problem. For instance, there is little doubt that the temperature dynamics of a fuel cell can be slow, but users are not concerned with the cell’s temperature: power output is a much more important measure of performance. Fuel cells are very multidisciplinary systems, where electrical engineering, electrochemistry, chemical engineering and materials science are all involved at various levels; it is therefore unsurprising that few researchers can master all of these branches, and that most of them will neglect or misinterpret phenomena they are unfamiliar with. The ambition of this thesis is to consider the main phenomena influencing the dynamics of fuel cells, to properly define the control problem and suggest possible approaches and solutions to it. This thesis will focus on a particular type of fuel cell, a variation of proton-exchange-membrane fuel cells with a membrane of polybenzimidazole instead of the usual, commercially available Nafion. The advantages of this particular type of fuel cells for control are particularly interesting, and stem from their operation at temperatures higher than those typical of Nafion-based cells: these new cells do not have any water-management issues, can remove more heat with their exhaust gases, and have better tolerance to poisons such as carbon monoxide. The first part of this thesis will be concerned with defining and modelling the dynamic phenomena of interest. Indeed, a common mistake is to assume that fuel cells have a single dynamics: instead, many phenomena with radically different time scales concur to define a fuel-cell stack’s overall behaviour. The dynamics of interest are those of chemical engineering (heat and mass balances), of electrochemistry (diffusion in electrodes, electrochemical catalysis) and of electrical engineering (converters, inverters and electric motors). The first part of the thesis will first present some experimental results of importance for the electrochemical transient, and will then develop the equations required to model the four dynamic modes chosen to represent a fuel-cell system running on hydrogen and air at atmospheric pressure: cathodic overvoltage, hydrogen pressure in the anode, oxygen fraction in the cathode and stack temperature. The second part will explore some of the possible approaches to control the power output from a fuel-cell stack. It has been attempted to produce a modularised set of controllers, one for each dynamics to control. It is a major point of the thesis, however, that the task of controlling a fuel cell is to be judged exclusively by its final result, that is power delivery: all other control loops, however independent, will have to be designed bearing that goal in mind. The overvoltage, which corresponds nonlinearly to the rate of reaction, is controlled by operating a buck-boost DC/DC converter, which in turn is modelled and controlled with switching rules. Hydrogen pressure, being described by an unstable dynamic equation, requires feedback to be controlled. A controller with PI feedback and a feedforward part to improve performance is suggested. The oxygen fraction in the cathodic stream cannot be easily measured with a satisfactory bandwidth, but its dynamics is stable and disturbances can be measured quite precisely: it is therefore suggested to use a feedforward controller. Contrary to the most common approach for Nafion-based fuel cells, temperature is not controlled with a separate cooling loop: instead, the air flow is used to cool the fuel-cell stack. This significantly simplifies the stack design, operation and production cost. To control temperature, it is suggested to use a P controller, possibly with a feedforward component. Simulations show that this approach to stack cooling is feasible and poses no or few additional requirements on the air flow actuator that is necessary to control air composition in the cathode.
357

Synthesis and characterization of purely sulphonated and composite membranes for high temperature fuel cells

De Almeida, Nicole E. 01 April 2010 (has links)
Fuel cell technologies have developed high interest due to their ability to provide energy in an environmentally friendly method. Proton exchange membrane fuel cells (PEM-FCs) require a PEM for use, where the most accepted PEM used today is Nafion. Nafion is ideal due to its chemical durability and high proton conductivity however it is highly expensive and limited to 80˚C during operation. To target these issues two methods have been developed. One was to synthesize a new membrane material to replace Nafion based upon sulphonated polysiloxanes and the other was to improve Nafion by synthesizing a composite. Both of these methods involved the sulphonated silane 2-4-chlorosulphonylphenethyltrimethoxysilane. Methods to characterize membranes to observe their properties compared to Nafion were thermogravimetric analysis (TGA), Fourier transmission infrared spectroscopy (FT-IR), electrochemical impedance spectroscopy (used to determine proton conductivity) and fuel cell performance. / UOIT
358

Investigation of Surface Properties and Heterogeneity in Gas Diffusion Layers for Polymer Electrolyte Membrane Fuel Cells

Fishman, J. Zachary 31 December 2010 (has links)
The development of improved water management strategies for the polymer electrolyte membrane fuel cell (PEMFC) could stand to benefit from an improved understanding of the surface and internal structure of the gas diffusion layer (GDL). The GDL is a fibrous porous material enabling mass transport between the PEMFC catalyst layer and flow fields. Fluorescence-based visualizations of liquid water droplet evaporation on GDL surfaces were performed to investigate water droplet pinning behaviours. The heterogeneous in-plane and through-plane porosity distributions of untreated GDLs were studied using computed tomography visualizations. The through-plane porosity distributions were utilized to calculate heterogeneous local tortuosity, relative diffusivity, and permeability distributions. Finally, the heterogeneous through-plane porosity distributions of GDLs treated for increased hydrophobicity were investigated. This work provides new insight into GDL material properties to better inform future PEMFC models.
359

Investigation of Surface Properties and Heterogeneity in Gas Diffusion Layers for Polymer Electrolyte Membrane Fuel Cells

Fishman, J. Zachary 31 December 2010 (has links)
The development of improved water management strategies for the polymer electrolyte membrane fuel cell (PEMFC) could stand to benefit from an improved understanding of the surface and internal structure of the gas diffusion layer (GDL). The GDL is a fibrous porous material enabling mass transport between the PEMFC catalyst layer and flow fields. Fluorescence-based visualizations of liquid water droplet evaporation on GDL surfaces were performed to investigate water droplet pinning behaviours. The heterogeneous in-plane and through-plane porosity distributions of untreated GDLs were studied using computed tomography visualizations. The through-plane porosity distributions were utilized to calculate heterogeneous local tortuosity, relative diffusivity, and permeability distributions. Finally, the heterogeneous through-plane porosity distributions of GDLs treated for increased hydrophobicity were investigated. This work provides new insight into GDL material properties to better inform future PEMFC models.
360

The conceptual design of novel future UAV's incorporating advanced technology research components

Clarke, Adrian James January 2011 (has links)
There is at present some uncertainty as to what the roles and requirements of the next generation of UAVs might be and the configurations that might be adopted. The incorporation of technological features on these designs is also a significant driving force in their configuration, efficiency, performance abilities and operational requirements. The objective of this project is thus to provide some insight into what the next generation of technologies might be and what their impact would be on the rest of the aircraft. This work involved the conceptual designs of two new relevant full-scale UAVs which were used to integrate a select number of these advanced technologies. The project was a CASE award which was linked to the Flaviir research programme for advanced UAV technologies. Thus, the technologies investigated during this study were selected with respect to the objectives of the Flaviir project. These were either relative to those already being developed as course of the Flaviir project or others from elsewhere. As course of this project, two technologies have been identified and evaluated which fit this criterion and show potential for use on future aircraft. Thus we have been able to make a contirubtion knowledge in two gaps in current aerospace technology. The first of these studies was to investigate the feasibility of using a low cost mechanical thrust vectoring system as used on the X-31, to replace conventional control surfaces. This is an alternative to the fluidic thrust vectoring devices being proposed by the Flaviir project for this task. The second study is to investigate the use of fuel reformer based fuel cell system to supply power to an all-electric power train which will be a means of primary propulsion. A number of different fuels were investigated for such a system with methanol showing the greatest promise and has been shown to have a number of distinct advantages over the traditional fuel for fuel cells (hydrogen). Each of these technologies was integrated onto the baseline conceptual design which was identified as that most suitable to each technology. A UCAV configuration was selected for the thrust vectoring system while a MALE configuration was selected for the fuel cell propulsion system. Each aircraft was a new design which was developed specifically for the needs of this project. Analysis of these baseline configurations with and without the technologies allowed an assessment to be made of the viability of these technologies. The benefits of the thrust vectoring system were evaluated at take-off, cruise and landing. It showed no benefit at take-off and landing which was due to its location on the very aft of the airframe. At cruise, its performance and efficiency was shown to be comparable to that of a conventional configuration utilizing elevons and expected to be comparable to the fluidic devices developed by the Flaviir project. This system does however offer a number of benefits over many other nozzle configurations of improved stealth due to significant exhaust nozzle shielding.The fuel reformer based fuel cell system was evaluated in both all-electric and hybrid configurations. In the ell-electric configuration, the conventional turboprop engine was completely replaced with an all-electric powertrain. This system was shown to have an inferior fuel consumption compared to a turboprop engine and thus the hybrid system was conceived. In this system, the fuel cell is only used at loiter with the turboprop engine being retained for all other flight phases. For the same quantity of fuel, a reduction in loiter time of 24% was experienced (compared to the baseline turboprop) but such a system does have benefits of reduced emissions and IR signature. With further refinement, it is possible that the performance and efficiency of such a system could be further improved. In this project, two potential technologies were identified and thoroughly analysed. We are therefore able to say that the project objectives have been met and the project has proven worthwhile to the advancement of aerospace technology. Although these systems did not provide the desired results at this stage, they have shown the potential for improvement with further development.

Page generated in 0.066 seconds