• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 554
  • 142
  • 61
  • 43
  • 24
  • 12
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 1244
  • 1244
  • 314
  • 305
  • 201
  • 194
  • 185
  • 156
  • 143
  • 132
  • 117
  • 112
  • 109
  • 100
  • 99
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
501

Design and development of a 100 W Proton exchange membrane fuel cell uninterruptible power supply

Du Toit, Johannes Paulus 01 1900 (has links)
M. Tech. (Engineering Department Applied Electronics and Electronic Communication, Faculty of Engineering) Vaal University of Technology / This study presents the design of a proton exchange membrane fuel cell stack that can be used to replace conventional sources of electrical energy in an uninterruptible power supply system, specifically for use in the telecommunications industry. One of the major concerns regarding the widespread commercialization of fuel cells is the high cost associated with fuel cell components and their manufacturing. A fuel cell design is presented in which existing, low-cost, technologies are used in the manufacture of cell components. For example, printed circuit boards are used in the manufacturing of bipolar flow plates to significantly reduce the cost of fuel cells. The first objective was to design, construct and test a single fuel cell and small fuel cell stack in order to evaluate the use of printed circuit boards in bipolar plate manufacturing. Since the use of copper in a fuel cell environment was found to reduce the lifetime of the cells, the bipolar plates were coated with a protective layer of nickel and chrome. These coatings proved to increase the lifetime of the cells significantly. Power outputs of more than 4 W per cell were achieved. The second objective was to analyze a small fuel cell stack in order to obtain a model for predicting the performance of larger stacks. A mathematical model was developed which was then used to design an electronic circuit equivalent of a fuel cell stack. Both models were adapted to predict the performance of a fuel cell stack containing any number of cells. The models were proven to be able to accurately predict the performance of a fuel cell stack by comparing simulated results with practical performance data. Finally, the circuit equivalent of a fuel cell stack was used to evaluate the capability of a switch mode boost converter to maintain a constant voltage when driven by a fuel cell stack, even under varying load conditions. Simulation results showed the ability of the boost converter to maintain a constant output voltage. The use of supercapacitors as a replacement for batteries as a secondary energy source was also evaluated.
502

Investigation of CO Tolerance in Proton Exchange Membrane Fuel Cells

Zhang, Jingxin 08 July 2004 (has links)
"The need for an efficient, non-polluting power source for vehicles in urban environments has resulted in increased attention to the option of fuel cell powered vehicles of high efficiency and low emissions. Of various fuel cell systems considered, the proton exchange membrane (PEM) fuel cell technology seems to be the most suitable one for the terrestrial transportation applications. This is thanks to its low temperature of operation (hence, fast cold start), and a combination of high power density and high energy conversion efficiency. Besides automobile and stationary applications (distributed power for homes, office buildings, and as back-up for critical applications such as hospitals and credit card centers), future consumer electronics also demands compact long-lasting sources of power, and fuel cell is a promising candidate in these applications. The goal of a cost effective and high performance fuel cell has resulted in very active multidisciplinary research. Although significant progress has been made on PEM fuel cells over the last twenty years, further progress in fuel cell research is still needed before the commercially viable fuel cell utilization in transportation, potable and stationary applications. A chief goal among others is the design of PEM fuel cells that can operate with impure hydrogen containing traces of CO, which has been the objective of this research. Standard Pt and PtRu anode catalyst has been studied systematically under practical fuel cell conditions, in an attempt to understand the mechanism and kinetics of H2/CO electrooxidation on these noble metal catalysts. In the study of Pt as anode catalyst, it was found that the fuel cell performance was strongly affected by the anode flow rate and cathode oxygen pressure. A CO electrooxidation kinetic model was developed taking into account the CO inventory in the anode, which can successfully simulate the experimental results. It was found that there is finite CO electrooxidation even on Pt anode with H2/CO as anode feed. Thus, anode overpotential and outlet CO concentration is a function of anode inlet flow rate at a constant current density. The on-line monitoring of CO concentration in PEM fuel cell anode exit has proved that the ~{!0~}ligand mechanism~{!1~} and ~{!0~}bifunctional mechanism~{!1~} coexist as the CO tolerance mechanisms for PtRu anode catalyst. For PtRu anode catalyst, sustained potential oscillations were observed when the fuel cell was operated at constant current density with H2/CO as anode feed. Temperature was found to be the key bifurcation parameter besides current density and the anode flow rate for the onset of potential oscillations. The anode kinetic model was extended further to unsteady state which can reasonably reproduce and adequately explain the oscillatory phenomenon. The potential oscillations are due to the coupling of anode electrooxidation of H2 and CO on PtRu alloy surface, on which OHad can be formed more facile, preferably on top of Ru atoms at lower overpotentials. One parameter bifurcation and local linear stability analysis have shown that the bifurcation experienced during the variation of fuel cell temperature is a Hopf bifurcation, which leads to stable potential oscillations when the fuel cell is set at constant current density. It was further found that a PEM fuel cell operated in an autonomous oscillatory state produces higher time-averaged cell voltage and power density as compared to the stable steady-state operation, which may be useful for developing an operational strategy for improved management of power output in PEM fuel cells with the presence of CO in anode feed. Finally, an Electrochemical Preferential Oxidation (ECPrOx) process is proposed to replace the conventional PrOx for cleaning CO from reformate gas, which can selectively oxidized CO electrochemically while generating supplemental electrical power without wasting hydrogen."
503

A Two Dimensional Model of a Direct Propane Fuel Cell with an Interdigitated Flow Field

Khakdaman, Hamidreza 18 April 2012 (has links)
Increasing environmental concerns as well as diminishing fossil fuel reserves call for a new generation of energy conversion technologies. Fuel cells, which convert the chemical energy of a fuel directly to electrical energy, have been identified as one of the leading alternative energy conversion technologies. Fuel cells are more efficient than conventional heat engines with minimal pollutant emissions and superior scalability. Proton Exchange Membrane Fuel Cells (PEMFCs) which produce electricity from hydrogen have been widely investigated for transportation and stationary applications. The focus of this study is on the Direct Propane Fuel Cell (DPFC), which belongs to the PEMFC family, but consumes propane instead of hydrogen as feedstock. A drawback associated with DPFCs is that the propane reaction rate is much slower than that of hydrogen. Two ideas were suggested to overcome this issue: (i) operating at high temperatures (150-230oC), and (ii) keeping the propane partial pressure at the maximum possible value. An electrolyte material composed of zirconium phosphate (ZrP) and polytetrafluoroethylene (PTFE) was suggested because it is an acceptable proton conductor at high temperatures. In order to keep the propane partial pressure at the maximum value, interdigitated flow-fields were chosen to distribute propane through the anode catalyst layer. In order to evaluate the performance of a DPFC which operates at high temperature and uses interdigitated flow-fields, a computational approach was chosen. Computational Fluid Dynamics (CFD) was used to create two 2-D mathematical models for DPFCs based on differential conservation equations. Two different approaches were investigated to model species transport in the electrolyte phase of the anode and cathode catalyst layers and the membrane layer. In the first approach, the migration phenomenon was assumed to be the only mechanism of proton transport. However, both migration and diffusion phenomena were considered as mechanisms of species transport in the second approach. Therefore, Ohm's law was used in the first approach and concentrated solution theory (Generalized Stefan-Maxwell equations) was used for the second one. Both models are isothermal. The models were solved numerically by implementing the partial differential equations and the boundary conditions in FreeFEM++ software which is based on Finite Element Methods. Programming in the C++ language was performed and the existing library of C++ classes and tools in FreeFEM++ were used. The final model contained 60 pages of original code, written specifically for this thesis. The models were used to predict the performance of a DPFC with different operating conditions and equipment design parameters. The results showed that using a specific combination of interdigitated flow-fields, ZrP-PTFE electrolyte having a proton conductivity of 0.05 S/cm, and operating at 230oC and 1 atm produced a performance (polarization curve) that was (a) far superior to anything in the DPFC published literature, and (b) competitive with the performance of direct methanol fuel cells. In addition, it was equivalent to that of hydrogen fuel cells at low current densities (30 mA/cm2).
504

Microfabricated Fuel Cells To Power Integrated Circuits

Moore, Christopher Wayne 12 May 2005 (has links)
Microfabricated fuel cells have been designed and constructed on silicon integrated circuit wafers using many processes common in integrated circuit fabrication, including sputtering, polymer spin coating, reactive ion etching, and photolithography. Fuel delivery microchannels were made through the use of sacrificial polymers. The characteristics of different sacrificial polymers were studied to find the most suitable for this work. A polypropylene carbonate solution containing a photo-acid generator could be directly patterned with ultraviolet exposure and thermal decomposition. The material that would serve as the fuel cells proton exchange membrane (PEM) encapsulated the microchannels. Silicon dioxide deposited by plasma enhanced chemical vapor deposition (PECVD) at relatively low temperatures exhibited material properties that made it suitable as a thin-film PEM in these devices. By adding phosphorous to the silicon dioxide recipe during deposition, a phosphosilicate glass was formed that had an increased ionic conductivity. Various polymers were tested for use as the PEM or in combination with oxide to form a composite PEM. While it did not work well alone, using Nafion on top of the glass layer to form a dual-layer PEM greatly enhanced the fuel cell performance, including yield and long-term reliability. Platinum and platinum/ruthenium catalyst layers were sputter deposited. Experiments were performed to find a range of thicknesses that resulted in porous layers allowing contact between reactants, catalyst, and the PEM. When using the deposited glasses, multiple layers of catalyst could be deposited between thin layers of the electrolyte, resulting in higher catalyst loading while maintaining porosity. The current and power output were greatly improved with these additional catalyst layers.
505

Hardware Simulation of Fuel Cell / Gas Turbine Hybrids

Smith, Thomas Paul 06 April 2007 (has links)
Hybrid solid oxide fuel cell / gas turbine (SOFC/GT) systems offer high efficiency power generation, but face numerous integration and operability challenges. This dissertation addresses the application of hardware-in-the-loop simulation (HILS) to explore the performance of a solid oxide fuel cell stack and gas turbine when combined into a hybrid system. Specifically, this project entailed developing and demonstrating a methodology for coupling a numerical SOFC subsystem model with a gas turbine that has been modified with supplemental process flow and control paths to mimic a hybrid system. This HILS approach was implemented with the U.S. Department of Energy Hybrid Performance Project (HyPer) located at the National Energy Technology Laboratory. By utilizing HILS the facility provides a cost effective and capable platform for characterizing the response of hybrid systems to dynamic variations in operating conditions. HILS of a hybrid system was accomplished by first interfacing a numerical model with operating gas turbine hardware. The real-time SOFC stack model responds to operating turbine flow conditions in order to predict the level of thermal effluent from the SOFC stack. This simulated level of heating then dynamically sets the turbine's "firing" rate to reflect the stack output heat rate. Second, a high-speed computer system with data acquisition capabilities was integrated with the existing controls and sensors of the turbine facility. In the future, this will allow for the utilization of high-fidelity fuel cell models that infer cell performance parameters while still computing the simulation in real-time. Once the integration of the numeric and the hardware simulation components was completed, HILS experiments were conducted to evaluate hybrid system performance. The testing identified non-intuitive transient responses arising from the large thermal capacitance of the stack that are inherent to hybrid systems. Furthermore, the tests demonstrated the capabilities of HILS as a research tool for investigating the dynamic behavior of SOFC/GT hybrid power generation systems.
506

The development and implementation of high-throughput tools for discovery and characterization of proton exchange membranes

Reed, Keith Gregory 13 November 2009 (has links)
The need for sustainable energy use has motivated the exploration of renewable alternative fuels and fuel conversion technology on a global scale. Fuel cells, which convert chemical energy directly into electrical energy with high efficiency and low emissions, provide a promising strategy for achieving energy sustainability. The current progress in fuel cell commercialization is mainly in portable and stationary applications, but fuel cell technology for transportation applications, which make up a substantial portion of the global energy market, have seen little commercial success. Proton exchange membrane fuel cells (PEMFCs) have high potential for addressing the future energy needs of the transportation energy sector. However, one of the prevailing limitations of the PEMFC is the availability of high-performance, cost-effective electrolyte materials. These materials may be realized in the near future by developing multi-functional polymer blends targeted at specific performance capabilities. Due to the near-infinite possibilities of polymer combinations and processing techniques high-throughput polymer characterization techniques are necessary to effectively and systematically screen for optimal materials and relevant structure-property relationships. In this work, a high-throughput mass transport assay (HT-MTA) has been developed to characterize water flux and permeability at multiple sample locations in parallel. The functionality of HT-MTA was evaluated using standard Nafion® films and a model semi-interpenetrated polymer network with commercial polyvinylidine fluoride as the host matrix for a proprietary polyelectrolyte supplied by Arkema, Inc. To further demonstrate the utility of HT-MTA, the instrument was incorporated into the lab's current high-throughput characterization toolset and used to investigate the mechanisms and effects of rapid free radical degradation of Nafion® membranes based on various concentrations of hydrogen peroxide and iron(II) sulfate in solution. The results have been used suggest the effects of these regent components on preferential degradation pathways and will prove to be useful in later simulating the membrane performance during in-situ fuel cell lifetime which is both time-intensive and costly. The high-throughput toolset was also used to develop a novel optimized blend consisting of polyetherimide (PEI), a low-cost high performance resin, and sulfonated PEI (S-PEI) made using a relatively mild post sulfonation reaction with trimethylsilyl chlorosulfonate. The effects of blend composition and thermal annealing on film performance were evaluated and the polymer system was shown to have optimal performance properties that should prove to be useful in other high-performance applications where mechanical strength is critical. In general, this work shows promising results for efficiently developing advanced polymer materials using high-throughput screening techniques.
507

Hybrid direct methanol fuel cells

Joseph, Krishna Sathyamurthy 21 May 2012 (has links)
A new type of fuel cell that combines the advantages of a proton exchange membrane fuel cells and anion exchange membrane fuel cells operated with methanol is demonstrated. Two configurations: one with a high pH anode and low pH cathode (anode hybrid fuel cell (AHFC)),and another with a high pH cathode and a low pH anode (cathode hybrid fuel cell (CHFC)) have been studied in this work. The principle of operation of the hybrid fuel cells were explained. The two different hybrid cell configurations were used in order to study the effect of the electrode fabrication on fuel cell performance. Further, the ionomer content and properties such as the ion exchange capacity and molecular weight were optimized for the best performance. A comparison of the different ionomers with similar properties is carried out in order to obtain the best possible ionomer for the fuel cell. An initial voltage drop was observed at low current density in the AHFC, this was attributed to the alkaline anode and the effect of the ionomers with the new cationic groups were studied on this voltage drop was studied. These ionomers with the different cationic groups were studied in the CHFC design as well. Finally, the use of non platinum catalyst cathode with the CHFC design was also demonstrated for the first time.
508

Design of a permanent magnet axial flux high-speed generator

El-Hasan, Tareq Sadeq Fawzi January 2002 (has links)
Electrical generating sets powered by gas turbines are required for many applications, in particular for emergency situations due to their critical attributes; high reliability, lightweight, small size, multi-fuel capabilities, low maintenance, low noise and low gas emissions. This research contends that a permanent magnet axial flux (PMAF) high-speed generator with a small gas turbine engine offers advantages over the radial flux permanent magnet generators. Higher power densities can be achieved with the axial flux configuration when compared to their counter parts of the radial flux machines of similar output power. The attributes of the PMAF machines were certainly appealing; lightweight, small size, high efficiency and ease of construction. In this research, a design approach for the PMAF high-speed generator which accounts for the mechanical and electrical aspects was provided. The machine's key components such as retainment ring was carefully designed and the materials utilised in their structures were appropriately selected to insure high mechanical integrity, ease of construction and low manufacturing cost. The generator's principle dimensions were determined from a theoretical model which was derived from the machine's main design parameters. This theoretical model was then correlated by some empirical coefficients determined through the manipulation of the experimentally validated finite element (FE) results. The analytical results have shown that with the appropriate design considerations, PMAF high-speed generators can be designed with high power densities in the range of 6-8 kW/kg and high efficiencies ideally in the range of 94 - 96 %. The mechanical integrity and the steady state electrical performance of the machine were analysed using three-dimensional (3D) FE models. More in this research, a parametric study was carried out on the most influential parameters of the machine to improve its electrical performance through minimise rotor and stator eddy current losses. In addition, the total harmonic distortion in the output waveform was minimised through the appropriate and careful design of the magnet shape and topology with the aid of 3D electromagnetic FE analysis. Furthermore, using FE it was possible to design, optimise and analyse the rotor back-iron disc through the selection of best material, shape and size for use in the PMAF high-speed generator. A prototype of the PMAF high-speed generator was constructed and tested preliminary at low speed for the purpose of the evaluation of the electrical performance of the machine. Experimental results have shown that the machine was capable to meet the design requirements. For the mechanical integrity of the machine, the rotors were safely tested on a cold run test rig at the speed of 47,000 rpm. This thesis describes also the trends and the technical details in the manufacturing, construction and experimental setup for the PMAF high-speed generator.
509

A Two Dimensional Model of a Direct Propane Fuel Cell with an Interdigitated Flow Field

Khakdaman, Hamidreza 18 April 2012 (has links)
Increasing environmental concerns as well as diminishing fossil fuel reserves call for a new generation of energy conversion technologies. Fuel cells, which convert the chemical energy of a fuel directly to electrical energy, have been identified as one of the leading alternative energy conversion technologies. Fuel cells are more efficient than conventional heat engines with minimal pollutant emissions and superior scalability. Proton Exchange Membrane Fuel Cells (PEMFCs) which produce electricity from hydrogen have been widely investigated for transportation and stationary applications. The focus of this study is on the Direct Propane Fuel Cell (DPFC), which belongs to the PEMFC family, but consumes propane instead of hydrogen as feedstock. A drawback associated with DPFCs is that the propane reaction rate is much slower than that of hydrogen. Two ideas were suggested to overcome this issue: (i) operating at high temperatures (150-230oC), and (ii) keeping the propane partial pressure at the maximum possible value. An electrolyte material composed of zirconium phosphate (ZrP) and polytetrafluoroethylene (PTFE) was suggested because it is an acceptable proton conductor at high temperatures. In order to keep the propane partial pressure at the maximum value, interdigitated flow-fields were chosen to distribute propane through the anode catalyst layer. In order to evaluate the performance of a DPFC which operates at high temperature and uses interdigitated flow-fields, a computational approach was chosen. Computational Fluid Dynamics (CFD) was used to create two 2-D mathematical models for DPFCs based on differential conservation equations. Two different approaches were investigated to model species transport in the electrolyte phase of the anode and cathode catalyst layers and the membrane layer. In the first approach, the migration phenomenon was assumed to be the only mechanism of proton transport. However, both migration and diffusion phenomena were considered as mechanisms of species transport in the second approach. Therefore, Ohm's law was used in the first approach and concentrated solution theory (Generalized Stefan-Maxwell equations) was used for the second one. Both models are isothermal. The models were solved numerically by implementing the partial differential equations and the boundary conditions in FreeFEM++ software which is based on Finite Element Methods. Programming in the C++ language was performed and the existing library of C++ classes and tools in FreeFEM++ were used. The final model contained 60 pages of original code, written specifically for this thesis. The models were used to predict the performance of a DPFC with different operating conditions and equipment design parameters. The results showed that using a specific combination of interdigitated flow-fields, ZrP-PTFE electrolyte having a proton conductivity of 0.05 S/cm, and operating at 230oC and 1 atm produced a performance (polarization curve) that was (a) far superior to anything in the DPFC published literature, and (b) competitive with the performance of direct methanol fuel cells. In addition, it was equivalent to that of hydrogen fuel cells at low current densities (30 mA/cm2).
510

Development of polymer electrolyte membranes for fuel cells to be operated at high temperature and low humidity

Zhou, Zhen 09 April 2007 (has links)
Polymer electrolyte membrane fuel cells (PEMFCs) have been looked as potential alternative energy conversion devices to conventional energy conversion systems such as combustion engines. Proton conducting membranes (PEMs) are one critical component of PEMFCs. The development of novel electrolyte membranes with dense structure, good mechanical flexibility, and high proton conductivity, but with little or no dependence on humidity at temperatures above 100¡ãC remains an important challenge to the realization of practical PEM fuel cells. In this thesis, to solve the technical difficulties existing in current high temperature PEM systems based on phosphoric acid and imidazole, a new type of proton conducting species 1H-1,2,3-triazole has been explored, and proved to have high proton conductivity and also enough electrochemical stability for fuel cell applications. In further experiments, effective methods have been developed to synthesize triazole derivatives and polymers. The properties of the synthesized polymers have studied and reported in this thesis. Preliminary computational simulations have also been performed to study the proton conducting mechanism to provide intrinsic information of the proton conducting process in 1H-1,2,3-triazole. In the final part, research works on other proton conducting species including H3PO4 and other heterocycles have been reported.

Page generated in 0.0607 seconds