• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 554
  • 142
  • 61
  • 43
  • 24
  • 12
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 1244
  • 1244
  • 314
  • 305
  • 201
  • 194
  • 185
  • 156
  • 143
  • 132
  • 117
  • 112
  • 109
  • 100
  • 99
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
611

Robust decisions and deep uncertainty an application of real options to public and private investment in hydrogen and fuel cell technologies /

Mahnovski, Sergej. January 2007 (has links)
Thesis (Ph.D.)--RAND Graduate School, 2007. / Includes bibliographical references.
612

Development of new membranes based on aromatic polymers and heterocycles for fuel cells

28 August 2008 (has links)
Not available
613

Mass Transfer and GDL Electric Resistance in PEM Fuel Cells

Wang, Lin 11 November 2010 (has links)
Many modeling studies have been carried out to simulate the current distribution across the channel and shoulder direction in a proton exchange membrane (PEM) fuel cell. However the modeling results do not show agreement on the current density distribution. At the same time, no experimental measurement result of current density distribution across the channel and the shoulder direction is available to testify the modeling studies. Hence in this work, an experiment was conducted to separately measure the current densities under the channel and the shoulder in a PEM fuel cell by using the specially designed membrane electrode assemblies. The experimental results show that the current density under the channel is lower than that under the shoulder except when the fuel cell load is high. Afterwards two more experiments were carried out to find out the reason causing the higher current density under the shoulder. The effects of the electric resistance of gas diffusion layer (GDL) in the lateral and through-plane directions on the current density distribution were studied respectively. The experimental results show that it is the through-plane electric resistance that leads to the higher current density under the shoulder. Moreover, a three-dimensional fuel cell model is developed using FORTRAN. A new method of combining the thin-film model and homogeneous model is utilized to model the catalyst layer. The model is validated by the experimental data. The distribution of current density, oxygen concentration, membrane phase potential, solid phase potential and overpotential in a PEM fuel cell have been studied by the model. The modeling results show that the new modeling method provides better simulations to the actual transport processes and chemical reaction in the catalyst layer of a PEM fuel cell.
614

Development of Methanol-Reforming Catalysts for Fuel Cell Vehicles

Agrell, Johan January 2003 (has links)
Vehicles powered by proton exchange membrane (PEM) fuelcells are approaching commercialisation. Being inherently cleanand efficient sources of power, fuel cells constitute asustainable alternative to internal combustion engines to meetfuture low-emission legislation. The PEM fuel cell may befuelled directly by hydrogen, but other alternatives appearmore attractive at present, due to problems related to theproduction, transportation and handling of hydrogen. Fuelling with an alcohol fuel, such as methanol, which isoxidised directly at the anode, offers certain advantages.However, the efficiency of the direct-methanol fuel cell (DMFC)is still significantly lower than that of the conventionalhydrogen-fuelled PEM fuel cell, due to some technical problemsremaining unsolved. Hence, indirect fuelling by a reformedliquid fuel may be the most feasible option in the early stagesof the introduction of fuel cell vehicles. The work presented in this thesis concerns the developmentof catalysts for production of hydrogen from methanol bypartial oxidation, steam reforming or a combination thereof.The work contributes to the understanding of how thepreparation route affects catalyst morphology and howphysicochemical properties determine catalytic behaviour andreaction pathways. The thesis is a summary of seven papers published inscientific periodicals. The first paper (Paper I) reviews thecurrent status of catalytic hydrogen generation from methanol,focusing on the fuel cell application. Paper II investigatesthe partial oxidation of methanol over Cu/ZnO catalystsprepared in microemulsion and by a conventionalco-precipitation technique. The activity for methanolconversion in the low-temperature regime is found to besignificantly higher over the former materials and the workcontinues by determining the nature of possible Cu-ZnOinteractions in the catalysts by studying their physicochemicalproperties more thoroughly (Paper III). In Paper IV, thepathways for methanol conversion via both partial oxidation andsteam reforming are elucidated. In Paper V, partial oxidation of methanol is studied overPd/ZnO catalysts prepared by microemulsion technique and againcompared to conventional materials. This investigationdemonstrates that although possessing high methanol conversionactivity, palladium-based catalysts are not suitable forreforming in fuel cell applications due to the considerableamounts of carbon monoxide formed. In Paper VI, methanol reforming is investigated over acommercial Cu/ZnO/Al2O3 catalyst. The mechanisms for carbonmonoxide formation and strategies for its suppression arediscussed, as well as reactor design aspects. The study alsoincludes some simple kinetic modelling. Finally, Paper VIIdescribes the optimisation of catalyst composition and processconditions to reach high hydrogen production efficiency at lowoperating temperatures and with minimum carbon monoxideformation. <b>Keywords:</b>PEM fuel cells, hydrogen, methanol, reforming,(partial) oxidation, reaction pathways, carbon monoxide,catalyst, microemulsion, Cu/ZnO, Pd/ZnO, copper, redoxproperties, oxidation state
615

Synthesis and characterization of palladium based carbon nanostructure-composites and their clean-energy application

Nitze, Florian January 2013 (has links)
Carbon nanostructures are a wide field with many applications. The use of carbon nanostructures as support in heterogeneous catalysis is a key development that led together with the use of nanoparticles to a significant cost reduction of catalysts. Catalysts designed in this way are widely applied in fuel cell technologies. For portable devices especially low temperature fuel cells are desirable with low hazards for the user. One technology which fulfills these requirements is the direct formic acid fuel cell (DFAFC). DFAFC have many promising characteristics, such as high electromotive force and easy fuel handling. However, they still suffer from too low power output and lifetime for commercialization. This thesis focusses on two main aspects: the synthesis of carbon nanostructures by chemical vapor deposition (CVD) and their application as catalyst support. The materials are investigated by many different techniques ranging from transmission electron microscopy (TEM) to fuel cell tests. Different carbon nanostructures could be synthesized by catalytic CVD on palladium (Pd) nanoparticles. Multi-walled carbon nanotubes (MWCNTs), carbon nanofibers (CNFs) and helical carbon nanofibers (HCNFs) were grown, selectively, dependent on temperature, using acetylene as carbon precursor. Especially HCNF raised further interest due to their unique structure. A growth model for HCNFs was developed based on an anisotropic extrusion model. The synthesis conditions for HCNFs were optimized until an almost 100 % purity with very high efficiency was obtained. The unique helical but fiber-like structure made the material very interesting as support for heterogeneous catalysis. Several catalysts based on Pd nanoparticle decorated HCNFs were developed. The synthesis methods ranged from standard methods like the polyol method to phase-transfer methods. The catalysts showed very promising results for the electro-oxidation of methanol, ethanol and formic acid. This makes them highly attractive for fuel cell applications. The catalysts were tested in DFAFC. The superiority of HCNF-based catalysts is attributed to the good attachment of nanoparticles to the defect-rich and easy to functionalize surface of HCNFs in combination with adequate film forming properties during electrode preparation. / Nanostrukturerat kol är ett mycket brett fält med ett stort antal tillämpningar. Användning av kolnanostrukturer som support för heterogena katalysmaterial har tillsammans med utvecklingen av nanopartiklar lett till en avsevärd minskning av kostnaden för katalysatorer. Katalysatorer designade på detta sätt används frekvent i bränsleceller. För portabla tillämpningar är utvecklingen av säkra och miljövänliga lågtemperaturceller mycket viktig. En teknologi som uppfyller dessa kriterier är bränsleceller som drivs med myrsyra (DFAFC). Sådana bränsleceller har många önskvärda egenskaper, såsom en hög elektromotorisk kraft och en enkel hantering av bränslet. Trots dessa goda egenskaper har de också en del nackdelar som hindrar en full kommersialisering. De två mest problematiska är en för låg genererad effekt samt en för kort livslängd på katalysatorerna. Denna avhandling fokuserar på två huvudpunkter som adresserar dessa problem; tillverkning och karaktärisering av kolnanostrukturer producerade med CVD, och deras tillämpningar som support för katalysatorer. Materialen karaktäriseras med en rad olika tekniker, allt från transmission-elektronmikroskopi till bränslecellstester. Olika kolnanostrukturer har syntetiserats med katalytisk CVD på palladium (Pd) nanopartiklar. Produktionen av flerväggiga kolnanorör, kolfibrer och heliska kolnanofibrer har tillverkats med acetylen som kolkälla och genom att variera temperaturen kunde innehållet av olika typer av nanostrukturerat kol kontrolleras. Särskilt stort intresse har de heliska kolnanofibrerna rönt på grund av deras unika struktur. Vi beskriver en tillväxtmekanism baserad på en anisotrop diffusionsmodell. Genom att justera produktionsparametrarna visar vi att heliska kolnanofibrer kunde tillverkas med nära 100 %-ig renhet och hög effektivitet. Den unika heliska och fiberlika strukturen är mycket intressant for tillämpningar som support för heterogena katalysatorer. Ett flertal kompositer för katalytiska tillämpningar har utvecklats baserade på heliska kolnanofibrer, dekorerade med heterogena katalysatorer genom en rad olika kemiska/fysikaliska tekniker. De syntetiserade materialen visar mycket goda katalytiska egenskaper för att oxidera metanol, etanol och myrsyra. Därigenom blir de mycket attraktiva för användning i bränsleceller. Vi korrelerar de goda katalytiska egenskaperna med en bra vidhäftning av nanopartiklarna på de heliska kolnanofibrerna defekter, deras goda ledningsförmåga, bra egenskaper för att förbereda elektroder, samt deras stora yta i förhållande till deras volym och vikt.
616

Cermet Anodes for Solid Oxide Fuel Cells (SOFC) Systems Operating in Multiple Fuel Environments: Effects of Sulfur and Carbon Composition as well as Microstructure

O'Brien, Julie Suzanne 25 January 2012 (has links)
A series of cermet powders of composition NixCo(1-x)O-YSZ were synthesized for testing as cermet anode materials for SOFCs. The Co is found by powder XRD to become incorporated into the crystal lattice of the NiO, thus forming a true alloyed material. SEM and EDS results show two types of particles upon sintering to 1380oC: small, amorphous particles of YSZ and large, crystalline particles of nickel. The electrochemical oxidation of hydrogen on a cermet anode composed of Ni0.7Co0.3O-YSZ was investigated using a series of many button cells. Through EIS data, cyclic voltammetry data, the exchange current densities for these button cells were determined. Although a relatively large variation was found (expected to be due to microstructural variation) the average values for both methods of measurement is in good agreement in hydrogen. Following reduction in pure hydrogen, the fuel was changed to a mixture with high concentration of H2S. It was found that a concentration of 10 % H2S/H2 produced a sudden change in anode microstructure and resulted in loss of exchange current density. Lowering the amount of H2S in the initial fuel feed, which allowed for a more gradual microstructural change, allowed the cell to eventually function at concentrations in excess of 10 % H2S/H2. It was determined by OCV values in various concentrations of H2S/H2 that hydrogen is the predominant fuel of choice, even if H2S is available. Following electrochemical testing, slow cooling in a 10 % H2S/H2 mixture following produced metal sulfide spheres, as determined by SEM and EDS. Investigation in hydrocarbon, alcohol and biodiesel fuels was then undertaken to test the fuel variability of the given cermet anode material. Methane containing 10 % H2S was found to have increased exchange current density relative to poisoned hydrogen. Ethane and biodiesel experienced no increase in exchange current density, but a lengthening of the functional lifetime of the cell was observed, indicating reduced carbon poisoning. Methanol is a promising oxygen-containing SOFC fuel since it produced exchange current density values larger than hydrogen, and showed no evidence of coke formation by post-mortem SEM. Since oxygen-containing fuels are known to decompose in the gas phase at typical SOFC operating temperatures, the performance in a mixture of various CO/H2 fuels was then investigated. The Ni0.7Co0.3O-YSZ cermet anode gave higher exchange current density values for low ratio of CO/H2 fuels in the range 20/80 and 30/70 compared to pure H2. This is the first example of a Ni-based anode providing higher performance with a CO/H2 mixed fuel than for a pure H2 fuel. Finally, continuous running of a cell with fuel ratio 25/75 CO/H2 for 7 days produced exchange current density values, which were observed to increase significantly above the values for pure H2 during days 1-4 followed by deterioration below the value for hydrogen on subsequent days.
617

Protective Coatings of Y2O3 and CeO2 on Porous Stainless Steel Supports for Use in Intermediate Temperature Metal-supported Solid Oxide Fuel Cells

Yan, Yan 27 November 2012 (has links)
With increasing attention paid to metal-supported SOFCs recently, metal supports have become important factors in the performance of the cells. The formation of surface oxides and the poisoning of Cr from Cr2O3-forming metal supports often result in the degradation of the cells. However, few studies have focused on developing oxidation resistance and decreasing Cr migration from porous alloys in intermediate temperature metal-supported SOFCs. In this work, Y2O3 and CeO2 coatings were applied to porous AISI 430 stainless steels by sol-gel dip coating. Phases and microstructures of the coatings on the porous metal supports were characterized by XRD and SEM with EDS, respectively. The effects of the coatings on oxidation resistance of the supports were evaluated by cyclic oxidation testing. Electrical and electrochemical properties of LSCF-SDC cathodes and symmetrical cells deposited on the Y2O3-protected metal supports were also investigated. The issue of Cr depletion of the supports was also discussed.
618

Protective Coatings of Y2O3 and CeO2 on Porous Stainless Steel Supports for Use in Intermediate Temperature Metal-supported Solid Oxide Fuel Cells

Yan, Yan 27 November 2012 (has links)
With increasing attention paid to metal-supported SOFCs recently, metal supports have become important factors in the performance of the cells. The formation of surface oxides and the poisoning of Cr from Cr2O3-forming metal supports often result in the degradation of the cells. However, few studies have focused on developing oxidation resistance and decreasing Cr migration from porous alloys in intermediate temperature metal-supported SOFCs. In this work, Y2O3 and CeO2 coatings were applied to porous AISI 430 stainless steels by sol-gel dip coating. Phases and microstructures of the coatings on the porous metal supports were characterized by XRD and SEM with EDS, respectively. The effects of the coatings on oxidation resistance of the supports were evaluated by cyclic oxidation testing. Electrical and electrochemical properties of LSCF-SDC cathodes and symmetrical cells deposited on the Y2O3-protected metal supports were also investigated. The issue of Cr depletion of the supports was also discussed.
619

Cermet Anodes for Solid Oxide Fuel Cells (SOFC) Systems Operating in Multiple Fuel Environments: Effects of Sulfur and Carbon Composition as well as Microstructure

O'Brien, Julie Suzanne 25 January 2012 (has links)
A series of cermet powders of composition NixCo(1-x)O-YSZ were synthesized for testing as cermet anode materials for SOFCs. The Co is found by powder XRD to become incorporated into the crystal lattice of the NiO, thus forming a true alloyed material. SEM and EDS results show two types of particles upon sintering to 1380oC: small, amorphous particles of YSZ and large, crystalline particles of nickel. The electrochemical oxidation of hydrogen on a cermet anode composed of Ni0.7Co0.3O-YSZ was investigated using a series of many button cells. Through EIS data, cyclic voltammetry data, the exchange current densities for these button cells were determined. Although a relatively large variation was found (expected to be due to microstructural variation) the average values for both methods of measurement is in good agreement in hydrogen. Following reduction in pure hydrogen, the fuel was changed to a mixture with high concentration of H2S. It was found that a concentration of 10 % H2S/H2 produced a sudden change in anode microstructure and resulted in loss of exchange current density. Lowering the amount of H2S in the initial fuel feed, which allowed for a more gradual microstructural change, allowed the cell to eventually function at concentrations in excess of 10 % H2S/H2. It was determined by OCV values in various concentrations of H2S/H2 that hydrogen is the predominant fuel of choice, even if H2S is available. Following electrochemical testing, slow cooling in a 10 % H2S/H2 mixture following produced metal sulfide spheres, as determined by SEM and EDS. Investigation in hydrocarbon, alcohol and biodiesel fuels was then undertaken to test the fuel variability of the given cermet anode material. Methane containing 10 % H2S was found to have increased exchange current density relative to poisoned hydrogen. Ethane and biodiesel experienced no increase in exchange current density, but a lengthening of the functional lifetime of the cell was observed, indicating reduced carbon poisoning. Methanol is a promising oxygen-containing SOFC fuel since it produced exchange current density values larger than hydrogen, and showed no evidence of coke formation by post-mortem SEM. Since oxygen-containing fuels are known to decompose in the gas phase at typical SOFC operating temperatures, the performance in a mixture of various CO/H2 fuels was then investigated. The Ni0.7Co0.3O-YSZ cermet anode gave higher exchange current density values for low ratio of CO/H2 fuels in the range 20/80 and 30/70 compared to pure H2. This is the first example of a Ni-based anode providing higher performance with a CO/H2 mixed fuel than for a pure H2 fuel. Finally, continuous running of a cell with fuel ratio 25/75 CO/H2 for 7 days produced exchange current density values, which were observed to increase significantly above the values for pure H2 during days 1-4 followed by deterioration below the value for hydrogen on subsequent days.
620

Comparative Performance of Anode-Supported SOFCs Using a Thin Ce0.9Gd0.1O1.95 Electrolyte with an Incorporated BaCe0.8Y0.2O3 − α Layer in Hydrogen and Methane

Sano, Mitsuru, Hibino, Takashi, Nagao, Masahiro, Teranishi, Shinya, Tomita, Atsuko January 2006 (has links)
No description available.

Page generated in 0.0512 seconds